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Abstract
Recent decades brought a revolution to biology, driven mainly by exponentially increasing amounts of data coming from 
“’omics” sciences. To handle these data, bioinformatics often has to combine biologically heterogeneous signals, for which 
methods from statistics and engineering (e.g. machine learning) are often used. While such an approach is sometimes neces-
sary, it effectively treats the underlying biological processes as a black box. Similarly, systems biology deals with inherently 
complex systems, characterized by a large number of degrees of freedom, and interactions that are highly non-linear. To 
deal with this complexity, the underlying physical interactions are often (over)simplified, such as in Boolean modelling of 
network dynamics. In this review, we argue for the utility of applying a biophysical approach in bioinformatics and systems 
biology, including discussion of two examples from our research which address sequence analysis and understanding intra-
cellular gene expression dynamics.

Keywords  Systems biology · Sequence analysis · Intracellular dynamics · Biophysical modelling · Gene expression 
regulation

Introduction

The revolution in molecular biology brought a need to ana-
lyse previously unprecedented amounts of data, demanding 
that biology makes a transition from a more qualitative sci-
ence to a genuine data science. Two significant challenges 
are: (i) to analyse an exponentially increasing amount of 
biological sequences stored in databases, and (ii) to predict 
and interpret in vivo expression dynamics of molecular spe-
cies inside a cell. To meet these challenges it is clear that 
advanced quantitative methods are necessary, in terms of 
both analysing data and formulating theoretical models that 
can make falsifiable predictions based on available experi-
mental data.

Biophysics traditionally deals with quantitative, i.e. phys-
ical representations of complex biological processes, which 

makes it a natural candidate for providing a framework for 
both modelling, and developing data analysis methods, in 
biological problems. This is most evident in systems biology, 
where one often has to understand how interactions between 
individual system components (e.g. proteins and their bind-
ing sites on DNA in gene circuits) lead to complex system 
behaviour. Thereby, one typically deals with a large number 
of components (degrees of freedom) inside a cell, e.g. there 
are a number of transcription factors (proteins that bind to 
DNA and regulate gene expression) in a cell, each of them 
present in many copies. Therefore, statistical thermody-
namics becomes a natural framework for dealing with such 
systems. Second, another characteristic is that input–output 
relationships for intracellular variables are often highly non-
linear. An ubiquitous reason for this non-linearity is satura-
tion of receptors with ligands, i.e. binding occupancy of a 
ligand to a receptor has a sigmoidal dependence on ligand 
concentration. In addition, a large cooperativity is often pre-
sent, where a larger number of weaker interactions contrib-
ute to overall binding affinity (Sneppen and Zocchi 2005). 
Such cooperativity leads to a sharp switch-like response of 
the system, and consequently to a strong non-linearity in 
the system, which has to be accounted for by methods from 
non-linear dynamics. Both statistical thermodynamics and 
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non-linear dynamics are a standard toolbox used in theoreti-
cal biophysics (Phillips et al. 2012).

On the other hand, in different “’omics” sciences (genom-
ics, proteomics) one often has to deal with analysis of 
exponentially increasing number of stored sequences, or 
to combine biologically heterogeneous signals to make 
predictions. To achieve this, methods from computer sci-
ence and mathematical statistics (e.g. machine learning) 
are often employed. However, an explicit underlying bio-
logical mechanism thereby often remains hidden within a 
“black box”. On the other hand, when applying a biophysical 
approach to bioinformatics problems, an explicit (biophysi-
cal) understanding of the underlying biological process is 
used to improve performance of bioinformatics algorithms. 
Such an approach has proved to be highly beneficial in a 
number of problems, from modeling structure and folding 
kinetics of RNA and proteins, to analysing gene expression 
and predicting regulatory elements (Berg et al. 2004; Berg 
and von Hippel 1988a; Djordjevic 2013; Djordjevic and Sen-
gupta 2006; Djordjevic et al. 2003; Lee et al. 2017; Locke 
and Morozov 2015; Mustonen et al. 2008; Sengupta et al. 
2002; Vilar 2010; Vilar and Saiz 2013; Zuker et al. 1999). In 
practice, to deal with the complex nature of the data, when 
a complete physical model of the underlying process cannot 
be developed, one combines a biophysical understanding of 
the relevant process, with appropriate methods from math-
ematical statistics.

The main goal of this review was to underline the transi-
tion of biology from a traditionally more qualitative to a 
quantitative science, where biophysics has a significant role. 
Such a transition can arguably be best seen in problems from 
sequence analysis, and in analysing intracellular expression 
dynamics, where a massive amount of data, or complex 
physical interactions, are found. Consequently, in this review 
we discuss the role of a (bio) physical approach to sequence 
analysis and intracellular dynamics. We will first discuss two 
modes of research in biology, the one traditionally present in 
biology, and the one needed by quantitative measurements, 
where we will particularly emphasise the complex nature of 
sequence and dynamics measurements data in biology. We 

will then follow by an overview of two examples from our 
research, one in sequence analysis (in particular, regulatory 
element prediction), and one in analysis of dynamics of gene 
expression regulation.

Two modes of research in biology

Ways of thinking and researching have evolved with the 
development of modern techniques that have rapidly become 
necessary for biological systems analysis. A traditional 
mode of research in biology is shown in Fig. 1a. One typi-
cally starts from a given hypothesis, which is encapsulated 
by a qualitative model. Hypothesis is then experimentally 
tested, usually by imposing an appropriate “yes/no” ques-
tion. Depending on the experimental test, the qualitative 
model is appropriately revised, and the cycle can be repeated 
as needed.

Therefore, models are clearly present in traditional bio-
logical research, but these models are qualitative rather than 
quantitative, and there is no evident separation between 
theory and experiment (Phillips et al. 2012). In fact, a nice 
example of a (traditional) model in molecular biology is the 
model of transcription, during which RNA is synthesized 
based on a DNA template. Physically, transcription is exhib-
ited by a complex molecular machine called RNA polymer-
ase (RNAP). RNAP binds to DNA and synthesizes RNA as 
it moves along the DNA chain. This mechanism can be even 
further simplified to a conceptual model shown in Fig. 2a. 
As can be seen here, the general principle behind this model 
is complementarity between the synthesized RNA and 
one of the two DNA strands which is used as a template. 
Moreover, the model of transcription can be incorporated 
in a wider model known as the Central Dogma of Molecu-
lar Biology, which emphasises that information flows from 
DNA to protein through RNA (Fig. 2b) (Alberts et al. 2014).

However, a significant change in modern biology was 
brought by the so-called “genome revolution”, where 
advances in technology allowed highly efficient DNA 
and RNA sequencing. This then led to the generation of 

Fig. 1   Role of modelling in 
biology. a Scheme of traditional 
research in biology. Note no 
clear separation between theory 
and experiment. b A revised 
scheme, increasingly character-
izing modern biology research, 
imposed by quantitative 
measurements. Such scheme 
characterizes traditionally quan-
titative sciences (e.g. physics), 
where there is a clear separation 
between theory and experiment
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a very large amount of data. For example, currently, there 
are ~ 80,000 completely or partially sequenced genomes 
stored in the GeneBank. To get a sense of the quantity 
of data, even a virus genome is ~ 50,000 bps long, while 
sequences of bacterial and human genomes are longer by 
two and five orders of magnitude, respectively. To illustrate 
this, if the E. coli genome was written within a book, it 
would take 1000 pages to write it down—to write a human 
genome, 1000 of such books would be needed (Phillips et al. 
2012). It is, therefore, clear that informatics resources are 
necessary for the storage and systematisation of such large 
quantities of data. Perhaps even more importantly, math-
ematical methods are necessary to analyse and extract infor-
mation from these sequences. Such information resources 
and quantitative methods for analysis of data in molecular 
biology are known as bioinformatics.

Moreover, the genome revolution brought not only a 
large amount of sequenced nucleotides, but also an ability 
to simultaneously measure expression of a large number of 
genes (e.g. all genes in the genome). Such measurements 
have been traditionally done on DNA microarrays (chips) 
where each spot on a microarray corresponds to one gene, 
and measurements can be done across different time points 
and experimental conditions; nowadays such studies will 
more often make use of RNA-seq measurements. In such 
microarray analysis there is at least one number associated 
with each of many spots on a microarray. Consequently, to 
test a biological hypothesis against such measurements, it 

is clear that a quantitative (rather than qualitative) model 
has to be used—that is, one needs to compare numbers 
from a quantitative model with numbers from quantitative 
experiments. Moreover, recent advances, in particular sin-
gle-cell techniques, allow also assessing stochastic effects 
in gene expression, instead of just the population average, 
which opens up possibilities for testing even more complex 
hypotheses.

Following the reasoning exposed above, one then comes 
to a research scheme which is becoming more and more 
appropriate to modern biology (Fig. 1b). Here, hypothesis 
together with underlying assumptions is now encapsulated 
within an appropriate quantitative (theoretical) model. The 
model leads to falsifiable predictions (often quantitative) that 
can now be compared with quantitative measurements, and 
such comparison may lead to a revised theoretical model. 
The cycle can then be repeated until a theoretical model 
shows a satisfactory agreement with experimental data. In 
this research mode, we get a clear division of labour between 
theory and experiment, which is a situation reminiscent of 
traditionally more quantitative sciences such as physics.

Beyond the genome revolution, a major problem in 
biology, which is becoming increasingly important with 
advancements in experimental biophysical techniques, is to 
understand in vivo expression dynamics of macromolecules 
(RNA, proteins) within a cell (De Jong and Geiselmann 
2014; Longo and Hasty 2006; Ohno et al. 2014). This is 
because cell conditions change with time, e.g. due to chang-
ing external conditions or due to passing through different 
stages of the cell cycle or organism development (Klumpp 
et al. 2009). Understanding in vivo intracellular dynamics 
is, however, related with difficulties, both from the experi-
mental and the theoretical side. That is, while measuring 
dynamics of macroscopic objects may be relatively easy, 
measuring in vivo dynamics of molecules within a cell 
requires advanced experimental techniques, and is typi-
cally related with significant technical difficulties, such as 
a necessity to synchronise the cell population (Morozova 
et al. 2016). Similarly, modelling such dynamics is gener-
ally also complicated, since, as explained above, the relevant 
systems employ a large number of degrees of freedom, with 
interactions that are typically highly non-linear and num-
bers of molecules of given species that can be very small. 
Such modelling then requires advanced techniques from 
theoretical biophysics, such as statistical physics, non-linear 
dynamics and stochastic modelling. However, despite these 
difficulties, a joint analysis of intracellular gene expression 
dynamics, through both experiment and theory, is highly 
valuable due to two main reasons. First, in those cases where 
direct measurements of protein dynamics within a cell are 
already available, theoretical predictions allow interpreting 
those data (Morozova et al. 2016). Second, when such meas-
urements are not available, one can use modelling to infer 

Fig. 2   a A conceptual model of transcription, emphasizing that RNA 
is synthesized based on one of the two DNA strands used as a tem-
plate. Modified from (Alberts et al. 2014). b The Central Dogma of 
Molecular Biology: DNA is copied during replication, RNA is syn-
thesized from DNA template during transcription, and proteins are 
synthesized from RNA, defining a flow of information from DNA to 
proteins
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relevant parameters, e.g. from equilibrium in vitro measure-
ments, and then use them to make predictions of the relevant 
in vivo dynamics, therefore gaining valuable understanding 
of the system function (Bogdanova et al. 2008; Klimuk et al. 
2018). Due to this, in this review, we will argue that there 
is a close connection between biophysical modelling and 
methods for data analysis in molecular biology (a.k.a. bio-
informatics). We will also argue that quantitative (biophysi-
cal) understanding of the underlying biological processes 
can largely improve the analysis and interpretation of the 
relevant data. In the reminder of the text, we will overview 
two examples from our research, one from sequence analysis 
(Djordjevic et al. 2017), and the other from modelling gene 
expression dynamics (Morozova et al. 2016; Rodic et al. 
2017), which illustrate these points.

Sequence analysis: predicting targets 
of transcription

A classical and still unresolved problem in bioinformatics is 
predicting a set of genes directly regulated by a given tran-
scription factor (Robison et al. 1998; Stormo 2000). Such 
genes are also called transcription targets or direct target 
genes for that transcription factor. To understand how these 
predictions are made, we will go back to the Central Dogma 
of Molecular Biology (Fig. 2b). In contrast to the common 
representation, the process of transcription shown within 
the Central Dogma is, in fact, typically highly regulated, 
often via DNA binding proteins called transcription factors. 
Transcription factors bind to the sequences upstream of the 
genes and regulate their expression. A classic example of 
gene expression control by transcription factors is the Lac 
operon, which encodes the enzymes that degrade sugar lac-
tose within a bacterial cell (Phillips et al. 2012). This operon 
is under control of two transcription factors, one acting as an 
activator (CAP, also called CRP), and the other acting as a 
repressor. So for example, when glucose, which is a primary 
source of food for bacteria, is absent, but sugar lactose (that 
has to be degraded) is present, bacteria are “hungry” and 
the sugar lactose has to be degraded. In such a case, CAP is 
bound to promoter DNA, but the repressor is not bound, so 
RNAP can bind to DNA and the downstream gene is tran-
scribed. Transcription factors, such as CAP, bind to short 
stretches of DNA (typically ~ 20 bps or shorter) which are 
called transcription factor binding sites (TFBS). Moreover, 
each transcription factor typically regulates not one, but a 
number of genes, so it may have many TFBS. Some exam-
ples of TFBS for the activator CAP are shown in Fig. 3a. As 
one can see, these binding sites can be described as a set of 
similar “words”. While there is clearly a common pattern in 
these binding sites, they are also highly variable, e.g. there 
are mostly “G”-s at the fifth position in the binding sites, but 

the bases that appear at most other positions are much less 
conserved. It is exactly due to this high variability that one 
typically gets a high number of false positives (i.e. predicted 
TFBS which, in reality, they are not) in TFBS predictions.

Actually, an even higher variability in binding site 
sequences is displayed for RNAP. The part of RNAP which 
binds DNA is the σ factor (Helmann and Chamberlin 1988). 
Most genes are transcribed by the housekeeping σ factor 
(σ70), while alternative σ factors transcribe genes under 
more specific conditions (e.g. that of stress and stringency) 
(Feklístov et al. 2014; Guzina and Djordjevic 2015; Paget 
and Helmann 2003). Binding sites for σ70, which are shown 
in Fig. 3b, consist of several parts that are called promoter 
elements (Feklístov et al. 2014). For example, if one takes 
all − 10 elements (elements are denoted according to their 
typical distance from the transcription start site), they can be 
represented by one general consensus sequence, but one can 
notice that actual instances of − 10 elements are quite dif-
ferent from this consensus. Consequently, predicting TFBS 
is a highly non-trivial problem, and the prediction methods 
can be divided into two related approaches: (i) Unsuper-
vised search (de-novo motif discovery), which corresponds 
to identifying binding sites of TF with a priori unknown 
specificity; and (ii) supervised search, where one starts from 
a set of experimentally known TBFS and aims to identify 
new instances of the motif using some recognition rule. We 

Fig. 3   Selected sequences of experimentally determined binding sites 
from RegulonDB database (Gama-Castro et al. 2011) for a CAP tran-
scription factor and b σ70. c Weight (energy) matrix is inferred from 
experimentally determined TFBS from RegulonDB (Gama-Castro 
et al. 2011) database
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below concentrate on supervised motif recognition, while 
for unsupervised motif search, one can consult some of the 
relevant reviews (Bulyk 2003; Das and Dai 2007; Jayaram 
et al. 2016; Sandve and Drablos 2006).

In supervised search, a standard method to predict TFBS 
is to form an energy matrix, where elements of this matrix 
can be interpreted in terms of contributions to protein–DNA 
binding energy (Berg and von Hippel 1987, 1988b; Djord-
jevic et al. 2003; Stormo and Fields 1998; Stormo and Zhao 
2010). That is, a larger weight, corresponding to a certain 
base at a certain position in the sequence, is associated with 
larger contribution to the binding energy due to more fre-
quent presence of this base in binding sites of the given 
transcription factor. Inferring elements of energy matrix in 
general leads to a non-linear optimization problem (such 
as quadratic programming), while in the limit where bind-
ing probability can be approximated by a Boltzmann dis-
tribution, it reduces to the log ratio of frequencies in the 
experimentally observed set and in the background model 
(Djordjevic et al. 2003). Energy matrices have been inferred 
through different approaches (Djordjevic and Sengupta 
2006; Djordjevic et al. 2003; Locke and Morozov 2015; 
Stormo and Fields 1998; Stormo and Zhao 2010; Vilar 
2010; Vilar and Saiz 2013), but searches of binding sites 
with such energy matrices (and searches of TFBS in general) 
typically result in a high number of false positives (Stormo 
2000; Towsey et al. 2008). For example, in the case of σ70 
one typically gets two orders of magnitude more predictions 
than what would be normally expected (Robison et al. 1998). 
Some number of those predicted sites may turn out to be true 
positives, and a significant fraction of false positives may 
be due to kinetics of promoter recognition—i.e. so-called 
poised promoters, where RNAP binds strongly, but forms the 
open complex too slowly to achieve functional transcription 
(Djordjevic 2013).

One is, however, often interested not so much in predict-
ing individual TFBS, but more in which genes are regulated 
by a given transcription factor (i.e. transcription targets/
direct regulatory targets). A classical approach to the prob-
lem of predicting transcription targets is as follows: One 
first assembles some experimental examples of TFBS from 
either in vivo experiments (ChIP-seq, ChIP-chip) (Park 
2009; Wade et al. 2007), or in vitro experiments (Protein 
Binding Microarrays, HT-SELEX, SELEX, DNA footprint-
ing, primer extension) (Bulyk 2006; Jagannathan et al. 2006; 
Newburger and Bulyk 2009; Roulet et al. 2002). From these 
experimentally assembled TFBS one then infers weight 
(energy) matrix using some of the many approaches that 
were previously developed. These methods are based either 
on statistical methods (Bulyk 2003; Favorov et al. 2005; 
Levitsky et al. 2014; Stormo 2000) or on a biophysical 
approach (Djordjevic and Sengupta 2006; Djordjevic et al. 
2003; Locke and Morozov 2015; Stormo and Fields 1998; 

Stormo and Zhao 2010), where using biophysical models 
generally shows a significantly larger accuracy (Djordjevic 
and Sengupta 2006; Djordjevic et al. 2003; Homsi et al. 
2009). Once the energy matrix is found, one next scans the 
regions upstream of genes to find the maximal energy matrix 
score in each region (de Jong et al. 2012; Kim and Ren 2006; 
Stormo and Zhao 2010; Wade et al. 2007). If this score is 
above a certain threshold, the downstream gene is classified 
as a putative target. This procedure, in essence, reduces the 
problem of finding transcription targets to detecting individ-
ual TFBS. However, the problem with such an approach is 
that, as explained before, such a procedure (based on detect-
ing individual TFBS) leads to high false positive numbers 
(Robison et al. 1998; Stormo 2000). Therefore, the main 
challenge, which we addressed in this example, is to do bet-
ter than this.

To address this challenge, the basic hypothesis behind our 
approach was as follows: A number of sites with high energy 
matrix scores appear randomly in DNA sequences, that is, 
in a long stretch of text (e.g. DNA sequence) a sufficiently 
short word (e.g. a binding motif) may occur randomly (Kim 
and Ren 2006). Such randomly occurring high scoring bind-
ing sites are often called non-sites. Our basic assumption 
[which is also empirically supported by binding energy/
score distributions (Djordjevic et al. 2003; Mustonen et al. 
2008; Mustonen and Lassig 2005; Sengupta et al. 2002)] is 
that these non-sites are under weak negative selection in the 
genome so that they are mostly not deleted from the genome 
sequence. Consequently, such non-sites are also predicted 
as true binding sites in energy matrix searches, leading to a 
high number of false positives as discussed above. There-
fore, to improve the search accuracy, one must somehow 
deal with these non-sites, i.e. find a way to filter them out 
when making predictions.

Our basic idea is that instead of individual TFBS one 
should look at the distribution of the energy matrix scores 
in the upstream regions of genes (Djordjevic et al. 2017). 
To motivate this idea, in Fig. 4a we show the distribution of 
predicted binding energies (black line) in all E. coli upstream 
intergenic regions for CAP transcription factor. As CAP is a 
pleiotropic regulator, which regulates a number of genes in 
E. coli, it binds to at least some of these upstream intergenic 
regions. On the other hand, in Fig. 4b we show the distri-
bution (black line) of predicted CAP binding energies in 
convergent intergenic regions. One does not expect any func-
tional TF binding in convergent intergenic regions since they 
are downstream of both of the adjacent genes. One can see 
clear overrepresentation of the binding energy distribution in 
the upstream intergenic regions, i.e. in these regions where 
the TF is expected to bind. On the other hand, such over-
representation is absent in the convergent intergenic regions 
(where the TF is not expected to bind). This then leads us 
to our basic idea to predict direct targets by assessing the 
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difference between the binding energy distribution in an 
upstream region and the background distribution.

The idea discussed above than boils down to the problem 
of comparing two distributions. It is convenient that this 
problem maps to some of the classical work in mathematics. 
A major advantage of this is that one can robustly assign a 
measure of statistical significance to any predicted target. 
The best-known example of a test comparing two distribu-
tions is the Kolmogorov–Smirnov (KS) test. This test is non-
parametric, and assigns a so-called D score, which quantifies 
a distance between two cumulative distribution functions 
(CDFs)—an example of a D score is shown graphically in 
Fig. 5a. These D scores are calculated very fast, directly 
from CDFs; consequently, one can scan thousands of dis-
tributions/genes on a PC within seconds. Moreover, each of 
the obtained D scores is associated with a robust significance 

estimate (P value). A modern competitor of the KS test is the 
Anderson–Darling test, which is considered more sensitive, 
but is significantly slower.

In Fig.  5a, an example of how the method works is 
shown, that is, one can see an example of a positive, i.e. of 
an upstream region that the method predicts as a target. Here 
CDF for actual binding energies is above the background, 
and the associated D score is highly statistically significant. 
On the other hand, all the cases where actual CDF would 
be slightly (insignificantly) above the background, or even 
below the background, would be classified as negatives. 
Note that the assessment in Fig. 5a is done for individual 
upstream regions, i.e. the method assesses the upstream 
regions one by one, while to drive the method, in Fig. 4 we 
showed global (i.e. in all upstream regions) binding energy 
distributions.

Fig. 4   Predicted binding energy distribution for a upstream intergenic 
regions and b convergent intergenic regions. Black and grey lines 
denote binding energy distributions in actual intergenic regions and 
in their randomized counterparts, respectively. Convergent intergenic 
regions are those that are downstream of both of the adjacent genes, 

while all other intergenic regions (that are upstream of at least one 
of the adjacent genes) are denoted by upstream intergenic regions. 
Overrepresentation in the high scoring tail for the upstream intergenic 
region distribution is indicated by an arrow Figure adopted from 
(Djordjevic et al. 2017)

Fig. 5   a An example of a predicted positive for the KS-based method. 
CDFs for predicted binding energies for the actual upstream inter-
genic region, and for the background (null) are shown by the full 
blue line, and by the red dashed line, respectively. The associated D 
score and P value for the difference between the two distributions are 
shown. b ROC curves for the method based on the AD (Anderson–

Darling test), the KS (Kolmogorov–Smirnov test) and the AD + KS 
(hybrid of the Anderson–Darling and the Kolmogorov–Smirnov test) 
are shown as indicated in the figure legend. Here, “Max” corresponds 
to the standard method based on assessing TFBS with maximal pre-
dicted binding energy, as described in the text Figure adopted from 
(Djordjevic et al. 2017)
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As to the background distribution mentioned above, the 
question comes of what is an optimal background distribu-
tion to use. The usual choice would be to randomize the 
upstream intergenic regions, i.e. to randomly permute the 
bases within them so that certain nucleotide statistics are 
preserved (e.g. a number of trinucleotides). An alternative, 
natural choice, would be to use the binding energy distribu-
tion in the convergent intergenic regions as the background 
distribution. This choice comes to mind since, as mentioned 
above, there should be no functional binding to the conver-
gent intergenic regions. In fact, if one compares how well 
these two choices of background can separate the scores 
in the positive and putative negative set, one finds that the 
background based on convergent intergenic regions can 
much better separate the two D score distributions. The fact 
that the background based on convergent intergenic regions 
is more optimal is, in fact, not surprising, because this back-
ground also takes into account a likely small (but still exist-
ing) negative selection on the non-sites. The randomized 
intergenic regions are, of course, not sensitive to such nega-
tive selection, though they can more accurately reproduce 
the nucleotide content of the searched region.

In Fig. 5b one can see the receiver operating characteris-
tic (ROC) curve, providing false positive vs. false negative 
comparison between our new method (based on the KS pro-
cedure) and the standard approach described above. One can 
see that the new method leads to a much better performance 
compared to the standard approach (note that the more accu-
rate method corresponds to the curve which is more bowed, 
i.e. which has better false positive/false negative trade off). 
This is, in fact, expected as the KS, in distinction to the 
standard method, is able to take care of non-sites, thereby 
significantly reducing the number of false positives. What, 
however, comes as a surprise is that if the method is imple-
mented through the Anderson–Darling (AD), rather than the 
KS procedure, we obtain a significantly worse performance 
compared to both the KS-based procedure and the standard 
method.

To understand this result, i.e. why the procedure imple-
mented through the KS shows a much better performance, 
we compared sensitivity and specificity for both implemen-
tations. We found that the sensitivity of the AD-based proce-
dure is comparable or even better compared to the sensitivity 
of the KS-based procedure. This is expected, as, normally, 
the AD test is considered very sensitive. However, when 
the specificity of the two implementations was compared, 
we found that the AD-based procedure shows a much lower 
specificity compared to the KS. In retrospect, it is not hard 
to understand this result as, in fact, we have only an approxi-
mate null (background) distribution. Due to this the large 
AD sensitivity becomes a problem, as even small differences 
between the two distributions are highlighted as significant 
leading to a large number of false positives. This proposition 

is also consistent with the result shown in Fig. 5b, where 
a performance (ROC curve) corresponding to the AD–KS 
hybrid method is shown. In this hybrid, the KS is used to 
filter out the upstream regions with clearly insignificant P 
values. If this is done, the accuracy then becomes compa-
rable to the KS implementation, indicating that AD indeed 
has a problem in correctly classifying regions with small 
(insignificant) differences compared to the null distribution.

Moreover, it turns out that for some TF our KS-based pro-
cedure shows a comparable performance with the standard 
method, i.e. based just on ROC curves, no clear difference 
in the performance of the two methods can be observed. 
However, even in such cases, we argue that the KS proce-
dure has a distinctive advantage, which originates from the 
robust assignment of statistical significance, allowed by the 
KS approach. That is, in the case of individual TFBS (the 
standard method), it is much more complicated to calculate 
P values, since the binding sites with predicted high binding 
energies are located in the tail of the energy distribution, 
which tends to be highly variable (Hertz and Stormo 1999). 
Consequently, to classify the hits (predict TFBS), one often 
resorts to what is known as the standard binding thresh-
old, which is based on correctly classifying ~ 98% TFBS in 
the training set (Robison et al. 1998). When the prediction 
accuracies of both methods at the standard threshold values 
(for the KS P = 0.05) are compared, the KS leads to signifi-
cantly higher prediction accuracy compared to the standard 
method, even in those cases where ROC curves showed 
no clear advantage of the KS method. Therefore, the KS 
method leads to a clearly more optimal choice of the clas-
sification threshold, which is in itself a distinct advantage 
of the method.

Overall, this method provides an example of a novel 
concept (Djordjevic et al. 2017), where overrepresentation 
of the scoring distribution that corresponds to the entire 
searched region is assessed, as opposed to predicting indi-
vidual binding sites. Two implementations of this concept 
were explored, based on the KS and the AD tests, which 
both provide straightforward P value estimates for predicted 
targets. We showed that the KS-based approach is both faster 
and more accurate, departing from the current paradigm of 
the AD being slower, but more sensitive. Consequently, the 
overviewed KS-based method may provide a both fast and 
accurate approach for predicting target loci of transcription 
regulators in a wide range of biological systems. In fact, 
even when one is interested in individual TFBS apart from 
the direct targets, first predicting the direct targets signifi-
cantly narrows the search space, allowing to search upstream 
of only those genes that are predicted as direct targets. That 
is, once the target upstream regions are identified, one can 
score individual motifs just in these regions, with search 
threshold set in some of the standard ways [e.g. by estimat-
ing TF chemical potential, see (Djordjevic et al. 2003)].
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Regulatory dynamics 
of restriction‑modification systems

To illustrate the contribution of biophysical modelling in 
understanding intracellular expression dynamics, we will 
next overview an example from our research that concerns 
modelling dynamics of gene expression regulation. In par-
ticular, the example addresses regulation and dynamics 
of enzyme expression during establishment of a bacterial 
restriction-modification (RM) system in a new host. RM 
systems are rudimentary bacterial immune systems, i.e. 
they protect a bacterial cell from foreign DNA, such as 
that coming from viruses and plasmids (Kobayashi 2001). 
In fact, two main examples of bacterial immune systems 
are RM and CRISPR/Cas systems (Goldberg and Mar-
raffini 2015). While RM systems are simpler, they pre-
sent an important model system in molecular biology. The 
system expresses two enzymes, restriction endonuclease 
(R) and methyltransferase (M). R recognizes and cuts spe-
cific DNA sequences, while M protects the same DNA 
sequences that are cut by R. Due to this, R cuts unmethyl-
ated sequences of the incoming viruses, while host DNA 
is methylated and consequently protected from cutting 
(Kobayashi 2001; Mruk and Kobayashi 2013).

However, one should also have in mind that the RM 
systems are often mobile, i.e. they can spread from one 
bacterial host to another. Since the host genome is initially 
not methylated, it is evident that expression of the R and 
M has to be regulated, to prevent destruction of the host 
genome during establishment of the RM system in a bac-
terial host. Note that, as mentioned above, the sequence 
specificity of R and M in a given R–M system comes in 
pairs, so even if the host genome is protected by another 
methyltransferase, this will not prevent it from being cut 
by R—i.e. for this, the host genome has to be protected 
by its corresponding M. Also, after the initial synthesis 
dynamics of the two enzymes in a naïve bacterial host, 
steady-state levels of methyltransferase and restriction 
endonuclease are established; these steady-state levels 
have to be carefully tuned to ensure that, on the one side, 
the methylation pattern is maintained (which is necessary 
due to hemimethylation during DNA replication), and that, 
on the other side, the methylation of the foreign DNA is 
prevented. Consequently, in experimental biology and bio-
chemistry, R–M systems are often taken as an experimen-
tal model for tightly regulated and highly coordinated gene 
expression (Kobayashi 2001; Mruk and Kobayashi 2013).

The tight regulation of R–M systems discussed above 
is often achieved by a specialized TF called control (C) 
protein (McGeehan et  al. 2011; Mruk and Kobayashi 
2013; Nagornykh et al. 2008). In Fig. 6a, gene organiza-
tion in a typical RM system is schematically shown. In 

this case (of the Esp1396I RM system), C protein binds 
both to the operator sequence upstream of its own gene 
(OCR) and to the operator sequence upstream of the M 
gene (OM) (McGeehan et al. 2011; Mruk and Kobayashi 
2013; Nagornykh et al. 2008). In fact, binding of C pro-
tein to DNA is often characterised by large binding coop-
erativity (Bogdanova et al. 2008, 2009; Nagornykh et al. 
2008). First, two monomers must form a dimer in order 
to bind to DNA. In the absence of RNAP, as soon as one 
dimer is bound to OCR, it recruits another dimer, forming 
a tetramer complex that represses transcription (Fig. 6b). 
Consequently, regulation by C protein is an example for 
the general concept discussed above, i.e. a large coopera-
tivity that appears in molecular interactions inside a cell. 
When RNAP is present, it can displace one of the two 
dimers and initiate transcription (Bogdanova et al. 2008, 

Fig. 6   a Typical organization of RM loci (genes that encode for RM 
system). C, R and M denote control protein, restriction enzyme and 
methyltransferase, respectively. Note that C and R are transcribed 
together (within the same operon). OR and OM denote the upstream 
operator sequences, to which C protein binds and regulates expres-
sion of the downstream genes. b Promoter configurations correspond-
ing to OR. The second and the third configurations correspond to the 
activation complex (in which the downstream genes are transcribed), 
while no transcription is exhibited in the first and the fourth configu-
ration. Statistical weights for each configuration are indicated by Z, 
where indices RNAP, D-RNAP and T denote configurations in which 
just RNAP is bound, C dimer and RNAP are bound and C tetramer is 
bound; empty operator sequence corresponds to statistical weight of 1 
Modified from (Morozova et al. 2016)
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2009; Nagornykh et al. 2008). Control of M gene in this 
particular system is simpler, i.e. binding of a C dimer to 
OM leads to transcription repression (scheme not shown). 
To model the dynamics of enzyme synthesis it is clear 
that we must first quantitatively describe how C protein 
regulates expression of the downstream genes. Briefly, this 
is done using statistical thermodynamics, where statistical 
weights (denoted by ZRNAP, ZD-RNAP and ZT in Fig. 6b) are 
assigned to each promoter configuration (Morozova et al. 
2016; Sneppen and Zocchi 2005). Note that the promoter 
configurations, together with the corresponding interac-
tion (free) energies are shown in Fig. 6b for OCR. Each 
statistical weight contains an entropic contribution, which 
includes concentrations of relevant molecules (C and 
RNAP), and an energy term, where appropriate binding 
free energies (indicated in Fig. 6b) are included. The total 
promoter transcription activity is then calculated accord-
ing to the so-called Shea–Ackers approximation, stating 
that the transcription rate is proportional to the binding 
occupancy of the promoter by RNAP (Shea and Ackers 
1985):

Note that in the equation above, the numerator corre-
sponds to the sum of statistical weights of transcriptionally 
active configurations, while the denominator corresponds to 
the sum of all statistical weights (i.e. to the partition func-
tion). For simplicity, the statistical weights in the expression 
above are written in terms of the part that depends on C 
protein concentration and the part in which all interaction 
parameters are absorbed [a, b and c in the Eq. (1)]. In fact, 
it is exactly cooperativity that leads to the quadratic and 
fourth-degree dependence in the Eq. (1) emphasizing the 
highly non-linear response due to cooperativity. It turns out 
that this model shows a very good agreement with in vitro 
data, i.e. is able to explain both the measurements of the pro-
moter transcription activity done on the wild-type systems 
and on systems with different mutations in C binding sites 
(Bogdanova et al. 2008).

However, the next challenge is to check if the model can 
explain the in vivo data on R and M synthesis in bacterial 
cells, during RM system establishment. To model that, one 
can formulate the transcription activity as a function of C 
protein concentration and use it as an input in a dynamical 
model that describes R and M synthesis (Morozova et al. 
2016). Such synthesis is described by appropriate ordinary 
non-linear differential equations, where the non-linearity 
comes from the non-linear dependence of transcription activ-
ity on C protein concentration. It was convenient that we 
could compare our model against the first available in vivo 

(1)
� ∼

Z
RNAP

+ Z
D∼RNAP

1 + Z
RNAP

+ Z
D∼RNAP + Z

T

=
a + b[C]2

1 + a + b[C]
2 + c[C]

4

single cell measurements of R and M protein amounts in 
time in a population of dividing bacterial cells (Morozova 
et al. 2016). A major problem in measuring the intracellular 
dynamics is how to synchronize the bacterial cell population 
(Mruk and Blumenthal 2008). This was here resolved by 
measuring the protein expression levels in a clonal culture 
descending from the same (single) cell, which abolishes the 
need to synchronize the cell population and makes it mean-
ingful to take the population average of the protein expres-
sion levels (shown for M in Fig. 7).

We constructed a minimal model, which includes only 
experimentally, directly observed regulatory interactions. 
The population dynamics effects were here included through 
a simple dilution model [see, e.g. (Narang and Pilyugin 
2008)], which takes into account that proteins which are 
typically stable in the cell (with the decay rates of hours or 
days), are effectively degraded due to dilution by cell divi-
sion. As shown in Fig. 7 (green line), this minimal model 
reproduces experimental data reasonably well, i.e. qualita-
tively it reproduces a massive peak of methyltransferase, as 
well as a large delay in endonuclease (dynamics not shown) 
with respect to methyltransferase synthesis, which are pro-
posed as the main qualitative characteristics of RM system 
expression dynamics. Also, quantitatively, it reproduces the 
data well in the first ~ 150 min for M (and for R throughout 
the entire experiment), but at later times, one can clearly 
observe disagreement with the M data.

Such a comparison of the model predictions with 
experimental data is an illustration of a more complicated 
research cycle shown in Fig. 1b. As agreement of the model 

Fig. 7   Methyltransferase expression dynamics: comparison of the 
model with the experimental data. Grey dots are experimental meas-
urements corresponding to in vivo measurements of enzyme protein 
amounts. Green curve corresponds to a minimal model, where only 
an abrupt change in cell division rate is taken into account Figure 
adapted from (Morozova et al. 2016)
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predictions with experimental data is incomplete (i.e. we 
do not obtain a good agreement of the model with the data 
for later times), the next step is to revise the model, so that 
a more complete agreement of the predictions with the 
model may be achieved. The direction to revise the model 
is again suggested by the experiment, where it was observed 
that the cell division rate changes with time, slowing down 
at ~ 180 min. Moreover, experimental observations show that 
the plasmid number per cell increases significantly during 
the course of the experiment. This indicates that the enzyme 
dynamics in a cell can be notably influenced by interplay of 
cell division and plasmid division rates, i.e. in such cases 
there is a necessity to simultaneously consider cell, plasmid 
and DNA dynamics.

In gene expression regulation, the effects of changing 
global growth conditions (which in term change the popu-
lation dynamics) were investigated for system steady states, 
and for simple synthetic gene circuits (Klumpp and Hwa 
2014). The observed R–M system dynamics indicate that 
analysis of these effects should be extended to the cases 
of (i) the system early dynamics, i.e. before steady state is 
established, (ii) natural, rather than just synthetic gene cir-
cuits, (iii) growth conditions that change with time. We think 
that R–M systems can provide a very good model (for both 
in silico and experimental studies) to quantitatively under-
stand these issues, as they present relatively simple gene 
circuits, whose dynamics are tightly constrained by gene 
expression regulation. However, studying the full dynam-
ics in natural gene circuits may also be related to notable 
technical difficulties. For example, when the full popula-
tion dynamics is introduced in the minimal model discussed 
above, it effectively couples R and M dynamics, since the 
terms describing plasmid division (i.e. changes in the gene 
copy number) appear in the equations describing both R and 
M dynamics. Technically, this leads to a significant increase 
in the dimensionality of the parameter inference problem. 
This can be dealt with either by some of more general meth-
ods for parameter inference in gene regulatory networks 
[such as genetic algorithms, see, e.g. (Kikuchi et al. 2003)], 
or by developing methods that are directly suited to the prob-
lem, i.e. exploiting the fact that the dynamical equations for 
all molecular species are coupled through the same terms 
(corresponding to the population dynamics parameters). 
Assessing the utility of these approaches, when applied to 
experimental data, will be further explored in the future.

Furthermore, a common approach to understand differ-
ent system features in molecular biology is to perturb these 
features, e.g. by introducing mutations or reengineering 
the system. However, in terms of understanding the system 
dynamics, such an approach can be very difficult and labour 
intensive, as it would require both introducing such pertur-
bations and measuring in vivo system dynamics for each 
of these perturbations. Alternatively, such perturbations 

can be made computationally, provided that the model 
of the wild-type system is available, which is much more 
straightforward and less labour intensive compared to the 
experimental approach. In fact, we are up to now unaware 
of experimental studies where in vivo expression dynamics 
of molecular species would be measured in parallel with 
extensive reengineering of the system. Consequently, in the 
context of studying RM system dynamics, we extensively in 
silico perturbed these systems (Rodic et al. 2017). The per-
turbations included characteristic biophysical features of the 
system, such as its translation rate, dimerization constant, 
binding cooperativity, etc., and such perturbations were done 
on RM systems with different architectures (in particular, 
convergent vs. divergent gene orientation). These perturba-
tions showed that both different system features and system 
architectures can be explained in terms of a few relatively 
simple dynamical properties which we call design princi-
ples and quantify through appropriate dynamical property 
observables. In particular, these properties are: (i) a time 
delay of R with respect to M synthesis, which prevents auto-
immunity, i.e. destruction of the host genome by R; (ii) a fast 
transition of the system from the “OFF” to the “ON” state, 
which ensures that once the host genome is methylated, 
it becomes protected from viral infections, (iii) increased 
stability of R steady state, so that too large fluctuations of 
the toxic molecule do not kill the host cell. Consequently, 
diverse features of RM systems can be explained in terms 
of a few relatively simple dynamical properties of the sys-
tem (Rodic et al. 2017). In the future, it will be interesting 
to investigate how the main system dynamical properties 
would be affected by also perturbing the system population 
dynamics parameters. Such perturbations would correspond 
to, e.g. changing global physiological conditions, as changes 
in these conditions would influence the population dynam-
ics. Such investigation might extend the idea of robustness, 
(Alon et al. 1999; Barkai and Leibler 1997), initially intro-
duced in the context of intracellular regulation, to changes 
in the external cell conditions.

Conclusion

The large amount of data in modern biology require devel-
opment of quantitative methods that enable their analysis 
and interpretation. While modern biology in general is 
becoming a genuine data science, accumulation of massive 
data is arguably most evident in ‘omics research, where 
huge amount of sequence information is being accumu-
lated, and in systems biology, where advanced quantita-
tive measurements are necessary to understand complex 
interactions between system components. In this review, 
we argued that biophysics can allow understanding of the 
biological mechanisms that underlie generation of these 
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complex data. Consequently, bioinformatics (defined as 
computational molecular biology) and biophysical model-
ling are complementing each other, and their close inte-
gration is necessary for understanding complex biological 
systems.

To specify the general points made above, we here sur-
veyed two examples where biophysical understanding can 
contribute to the analysis of massive biological data. The 
first example concerned sequence analysis and illustrates 
applications to ‘omics data (in this case genome analysis). 
Here, the new bioinformatics method was developed by 
considering a physical mechanism of TF binding, where it 
was proposed that not individual binding energies, but their 
overrepresentation with respect to background distribution is 
indicative of function. This physical concept was then trans-
lated to an appropriate mathematical framework allowing 
us to make bioinformatics predictions (in this case of target 
genes). Moreover, while this concept was tested for bacterial 
transcription regulators, we expect that it could equally (or 
even better) be applicable to eukaryotic transcription regu-
lators. This is because in eukaryotes clustering of TFBS is 
often observed, which would lead to even more pronounced 
differences between the actual and the background distri-
butions. This illustrates that once the underlying biophysi-
cal mechanism is taken into account, it may lead to a data 
analysis method applicable to a wide range of systems, as 
this same mechanism may be common in diverse systems.

The second example concerns understanding the 
dynamics of gene expression regulation and directly illus-
trates how biophysical modelling can contribute to systems 
biology. In this example, we have seen that a thermody-
namical and dynamical system modelling can explain well 
both in vitro and in vivo measurements done on RM sys-
tems (Bogdanova et al. 2008; Morozova et al. 2016). How-
ever, in addition to including the intracellular regulation, a 
more realistic model of the system also has to include full 
population dynamics effects. This provides an example of 
a more complex research cycle in biology, where a theo-
retical model is being revised based on comparison with 
quantitative experiment. While key regulatory features in 
RM systems are different, they can be explained in terms 
of a few simple design principles (Rodic et al. 2017). Such 
design principles may provide a common framework for 
understanding these systems, emphasizing the importance 
of quantitative modelling of the system dynamics. In fact, 
understanding similarities in mechanistically otherwise 
different biological systems (which are often called design 
principles), is a major goal of systems biology.
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