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When traversing the QCD medium, high-p⊥ partons lose energy, which is typically measured by suppression,
and predicted by various energy-loss models. A crucial test of different energy-loss mechanisms is their
functional dependence on the length of traversed medium (i.e., path-length dependence). The upcoming
experimental measurements will, for the first time, generate data that may allow to clearly assess this dependence,
in particular, by comparing results from Pb + Pb collisions with future measurements in smaller systems.
However, to perform such a test, it is crucial to choose an optimal observable. To address this, we here use both
analytical and numerical analyses to propose a novel—simple, yet accurate and robust—observable for assessing
the path-length dependence of the energy loss. Our numerical results show that, by using this observable,
different (underlying) energy-loss mechanisms may be directly differentiated from the experimental data, which
is, in turn, crucial for understanding the properties of the created QCD medium.
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Introduction. Understanding properties of quark-gluon
plasma (QGP) [1] created at the Large Hadron Collider (LHC)
and Relativistic Heavy Ion Collider (RHIC) experiments is a
major goal of ultrarelativistic heavy ion physics [2], which
would allow understanding properties of QCD matter at its
most basic level. Energy loss of high-p⊥ partons traversing
this medium is an excellent probe of its properties [3], which
provided a crucial contribution [2] to establishing that QGP
is created in these experiments. Comparing predictions of
different energy-loss models [4], and, consequently, different
underlying energy-loss mechanisms with experimental data
is, therefore, crucial for understanding properties of created
QGP. However, an open question is how to provide the most
direct comparison of energy-loss predictions with experimen-
tal data.

The most basic signature for distinguishing different
energy-loss models is how the predicted energy loss depends
on the length of the traversed QCD medium (so-called path-
length dependence). This path-length dependence directly
relates to different underlying energy-loss mechanisms, such
as perturbative QCD collisional (with typically linear [5,6]),
radiative (with typically quadratic [7–11]), or alternatively
conformal anti-De Sitter holography models (with third-
power [12] energy-loss path-length dependence). Moreover,
even in such cases, the division is not so clear as there are
numerous other effects that can significantly alter these path-
length dependencies [13–15]: inclusion of the mass of the
leading particle, finite-size, and finite temperature effects in
QGP, interference effects, etc. Therefore, accurately assessing
the path-length dependence is also crucial for understanding

*magda@ipb.ac.rs

mechanisms that underly the observed energy loss, which is,
in turn, necessary for investigating the properties of QCD
matter created at RHIC and LHC, i.e., for precision QGP
tomography.

However, despite its essential importance and longstanding
interest in this subject, it is still not possible to directly
infer the energy-loss path-length dependence from experi-
mental measurements and, consequently, provide a possibil-
ity to discriminate between different energy-loss models. To
our knowledge, the most comprehensive study in this sub-
ject [16,17], attempted to extract the energy-loss path-length
dependence from a thorough simultaneous study of RAA and
v2 predictions and data (at Au + Au collisions at RHIC and
Pb + Pb collisions at the LHC) but was not able to constrain
this dependence based on the existing observables and data.
With this in mind, the goal of this Rapid Communication is
to propose a novel approach for extracting the energy-loss
path-length dependence.

It is intuitively clear that the most direct probe of the path-
length dependence would involve comparing experimental
data (and the related theoretical predictions) for two-collision
systems of different sizes. Moreover, it would be optimal if
the size would be the only property distinguishing these two
systems, i.e., that other properties and parameters needed for
generating relevant predictions would be the same between
the two systems. Equally important, it is necessary to propose
an appropriate observable from which the path-length depen-
dence can be reliably extracted. Consequently, the aim of the
analysis presented in this Rapid Communication is to infer
an optimal system and an optimal observable for assessing
the energy-loss path-length dependence. We will also test how
reliable and robust is the inferred observable to different types
of energy loss, probes, centralities, and collision systems.
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Appropriate observable. In this section, we first start by
asking what is an appropriate observable to assess the energy-
loss path-length dependence? To start addressing this ques-
tion, we note that such an observable should be sensitive
to jet-medium interactions (so that energy-loss path-length
dependence can be reliably extracted). On the other hand, it
should not be sensitive to the medium evolution as the details
of the medium evolution would, for such a purpose, present an
unwanted background. Keeping this in mind, it is evident that
such an observable should be a function of RAA since RAA has
exactly these desired properties—i.e., it is highly sensitive to
the energy-loss mechanisms in QGP [18,19], whereas being
insensitive to the medium evolution (i.e., it can be character-
ized by mean QGP temperature) [19]. The medium evolution
insensitivity is also consistent with our recent result [20] of al-
most identical RAA for constant medium temperature and (1 +
1)-dimensional Bjorken expansion; however, this still remains
to be further verified by using more realistic medium evolution
calculations, including event-by-event fluctuations [17,21].

Appropriate systems. Measurements for 5.02-TeV Pb +
Pb collisions are available, whereas precision measurements
for 5.44-TeV smaller systems (Xe + Xe, Kr + Kr, Ar +
Ar, and O + O) will become available in the future with the
planned beam size scan (BSS) at the LHC. As these systems
have similar collision energies but different sizes (atomic mass
numbers are A = 208, 129, 78, 40, 16 for Pb, Xe, Ke, Ar, and
O), comparison of Pb + Pb with smaller systems appears to be
a good candidate for the path-length dependence study. Note
that the BSS at the LHC is complementary to the current beam
energy scan (BES) at RHIC, as in the BES, the systems of the
same size but different collision energies are tested, whereas
in the BSS, the systems of the same energy but different
sizes will be explored, thus providing a crucial insight in how
properties of the created matter depend on the size of the
colliding ions.

Computational framework. In this Rapid Communication,
the RAA predictions will be generated by our full-fledged nu-
merical procedure, recently developed in Ref. [22]. The pro-
cedure is based on our state-of-the-art dynamical energy-loss
formalism [5,15], which contains different important effects
(some of which are unique to this model): (i) Finite-size finite
temperature QGP, consisting of dynamical (that is moving)
constituents. This abolishes the widely used approximations
of static scattering centers, vacuumlike propagators, and/or
infinite-size QGP (e.g., Refs. [7,8,10,11]). (ii) Our calcula-
tions are based on the finite temperature generalized hard-
thermal-loop approach [23] in which the infrared divergencies
are naturally regulated [15]. (iii) Both collisional [5] and
radiative [15] energy losses are computed under the same
theoretical framework, which is applicable to both light and
heavy flavor. (iv) The model is generalized to the case of
finite magnetic mass [24] and running coupling [25]; recently,
we also applied first steps towards removing widely used
soft-gluon approximation [26]. Moreover, in Ref. [18], we
showed that all these ingredients are necessary for accurately
explaining the high-p⊥ parton-medium interactions in QGP.

To generate the final medium modified distribution of high-
p⊥ hadrons, the formalism was integrated into fully optimized
numerical framework DREENA [22], which integrates the

initial-p⊥ distribution of leading partons [27], energy loss
with multigluon [28], and path-length [29] fluctuations and
fragmentation functions [30]. To generate RAA predictions for
Pb + Pb collisions, we use the set of parameters specified in
Ref. [22], which correspond to standard literature values (not
repeated here for brevity).

The dynamical energy-loss formalism was previously used
to obtain a comprehensive set of RAA predictions at the RHIC
and LHC [22]; it shows wide agreement with the existing
data [25], explaining puzzling data and generating nonin-
tuitive predictions for future experiments [31,32] (some of
which were already confirmed by subsequent data [33,34]).
This then strongly indicates that our formalism can realisti-
cally describe high-p⊥ parton-medium interactions and that it
provides a suitable framework for the goal that we want to
achieve in this Rapid Communication.

Smaller systems. For RAA predictions in smaller systems
and their comparison with Pb + Pb collisions, one should
note that RAA depends on: (i) initial distribution of high-p⊥
partons, (ii) average temperature of the created QGP, and
(iii) path-length distributions. Regarding initial distributions,
we previously showed [31] that, when the collision energy
is changed almost two times (from 2.76 to 5.02 TeV), the
influence of the change in p⊥ distributions leads to only a
small change (less than 10%) in the resulting suppression.
Consequently, for the increase of less than 10% in the collision
energy (from 5.02 to 5.44 TeV), the same high-p⊥ distribu-
tions can be assumed. The average temperature (T ) for each
centrality region in 5.02-TeV Pb + Pb collisions is estimated
according to Ref. [22]. Note that T is directly proportional
to the charged multiplicity, whereas inversely proportional to
the overlap area and average size of the medium, i.e., T =
( dNch/dη

A⊥L
)
1/3

[22,35]. To estimate T in smaller systems, we note
that, for each centrality region, all the above quantities change
in the two-collision systems: A⊥ ∼ A2/3; L ∼ A1/3 [36,37];
dNch/dη ∼ Npart, where Npart ∼ A since, for the same col-
lision energy, dNch/dη

Npart
should remain constant with decreas-

ing the systems’ size [38,39]. This therefore leads to T ∼
( A

A2/3A1/3 )
1/3 ∼ const, i.e., we expect that, for a fixed centrality

region, T will remain unchanged when moving from large Pb
+ Pb to smaller systems. Finally, the path-length distributions
for smaller systems, at different centralities, can be calculated
in the same manner as previously for Pb + Pb [22]. It is
straightforward to see that the two distributions are similar up
to a rescaling factor corresponding to A1/3. Consequently, we
see that comparison of Pb + Pb with smaller systems is, in
fact, close to ideal when it comes to probing the path-length
dependencies.

RAA ratio. The next question is what is the exact vari-
able (i.e., its functional dependence on RAA) that should be
compared for the two systems in order to extract the path-
length dependence. Since RAA increases when the system size
decreases, it may seem that the ratio of RAA for the two
systems is a natural choice [40]. To test this proposal, in Fig. 1,
we show momentum dependence of the RAA ratio for the
Xe + Xe and Pb + Pb systems (note that, for easier reading,
we will first concentrate on Xe + Xe and Pb + Pb and we will
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FIG. 1. Ratio of RXeXe and RPbPb is shown as a function of p⊥ for charged hadrons, D and B mesons (full, dashed, and dot-dashed curves,
respectively). Centrality regions are denoted in the upper right corners of each panel.

discuss smaller systems subsequently). We see that it would
be very hard to extract the path-length dependence from such
a ratio, e.g., for high p⊥, this ratio approaches 1, naively
suggesting that the underlying model has no (or only weak)
path-length dependence. However, the dynamical energy-loss
model has, in fact, a strong (between linear and quadratic)
path-length dependence. The same problem would emerge if
experimental data would be plotted in that way, i.e., one may
naively conclude that high-p⊥ suppression does not depend
on the system size. Moreover, we see that this quantity is
not robust with respect to the changes in collision centrality,
which would further complicate extracting the path-length
dependence from simple RAA ratio.

The problem above can be intuitively understood by using
scaling arguments. Fractional energy-loss �E/E can be esti-
mated as [22]

�E/E ≈ χT
a
L

b
, (1)

where a, b are proportionality factors, T is the average tem-
perature of the medium, L is the average path-length traversed
by the jet, and χ is a proportionality factor (which depends
on initial jet p⊥). b → 1 corresponds to the linear, whereas
b → 2 corresponds to the quadratic [Landau-Pomeranchuk-
Migdal- (LPM-) like] dependence of the energy loss.

If �E/E is small (i.e., for higher p⊥ of the initial jet,
and for higher centralities), we can make the following esti-
mate [22]:

RAA ≈ 1 − ξT
a
L

b
, (2)

where ξ = (n − 2)χ/2 and n is the steepness of the initial
momentum distribution function.

The ratio of RXeXe and RPbPb then becomes

RXeXe

RPbPb
≈ 1 + ξT

a
L

b
Pb

[
1 −

(
AXe

APb

)b/3
]
. (3)

This quantity is rather complicated, depending explicitly
on the initial jet energy (through ξ ), average medium tem-
perature, and average size of the medium. Also, it explicitly
depends on centrality (through T and LPb, which decrease
with increasing centrality), consistently with what is seen in
Fig. 1. Furthermore, as centrality and initial energy of the

jet increase, ξ, T , and LPb become smaller, explaining why
the ratio in Fig. 1 goes to 1 for high p⊥ and high centrality,
which results in the problem of concealing the path-length
dependence. Consequently, the ratio of RAAs for different
collision systems is not a suitable observable for extracting
path-length dependence.

Suitable observable. It is clear that such an observable
should expose coefficient b in a simplest possible manner.
To initially gauge the appropriate functional dependence, we
again resort to the scaling arguments given above for which
we have shown to provide a reasonable description of the
full-fledged numerical model results in Fig. 1. We proceed by
subtracting RAAs [obtained from Eq. (2)] from 1, which, in the
case of Xe and Pb, reduces to

RXePb
L ≡ 1 − RXeXe

1 − RPbPb
≈ ξT

a
L

b
Xe

ξT
a
L

b
Pb

≈
(

AXe

APb

)b/3

. (4)

This new quantity RXePb
L has a very simple form, which

depends only on the medium size (through AXe/APb) and on
the path-length dependence, i.e., coefficient b, which is now
directly exposed. Note again that this simple dependence is
expected to hold for higher centralities and higher initial
p⊥ where Eqs. (2) and (4) are applicable. Consequently, as
one plots RXePb

L at higher centrality regions, one may expect
that this value will approach a limit that directly reflects the
path-length dependence, i.e., relation given by Eq. (4).

To numerically test our proposal and assess the applica-
bility of the analytically derived scaling in Eq. (4), we fur-
ther concentrate only on higher centrality regions and calcu-
late (1 − RXeXe)/(1 − RPbPb) using our full-fledged numerical
procedure [22]. This ratio is shown in Fig. 2; full, dashed, and
dot-dashed curves show our full results for charged hadrons,
D and B mesons, respectively; the dashed lines correspond
to the b = 1 and 2 limits from Eq. (4). From Fig. 2, one can
see that RXePb

L is almost independent of centrality, which is
exactly what one needs for such observable. At high-p⊥ →
100 GeV, we clearly see that RXePb

L for all types of par-
ticles reaches a limiting value as expected. Moreover, this
limiting value (RXePb

L ≈ 0.8) directly reflects the underlying
path-length dependence, which is, in our case (the dynamical
energy-loss formalism with radiative and collisional energy
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FIG. 2. Predictions for RXePb
L as a function of p⊥ are shown

for charged hadrons (full curves), D mesons (dashed curves), and
B mesons (dot-dashed curves). Upper (lower) dashed gray lines
correspond to the case in which energy-loss path-length dependence
is linear (quadratic). Centrality regions are denoted in the upper right
corners of each panel.

losses in a finite-size QCD medium), between linear and
quadratic (i.e., b ≈ 1.4), regardless of the particle flavor; note
that this extracted path-length dependence is different from a
common assumption of heavy flavor having linear, whereas
light flavor having quadratic (LPM-like) dependance. It is,
therefore, clear that, making such plots from experimental
data and extracting the corresponding path-length dependence
(exponent b), can be used to differentiate between different
energy-loss models in a simple and direct manner. Also, note
that, in distinction to Fig. 2, where the gray dashed lines are
simple and intuitive (allowing straightforward inference of
path-length dependence), defining such lines in Fig. 1 would
not be possible.

Testing robustness and reliability. To address the robustness
of the RAB

L observable, i.e.. if the observable is applicable
to systems of diverse sizes, we further test RAB

L on other
smaller systems (Kr + Kr, Ar + Ar, and O + O). With
this goal in mind, in Fig. 3, we concentrated on charged
hadrons and generated full-fledged predictions for RAB

L for
Xe − Pb, Kr − Pb, Ar − Pb, and O − Pb as a function of
p⊥. From this figure, we first observe that, for all four systems,
this observable is almost independent of centrality as expected
from the arguments presented above. Second, we also observe
that, independent of the collision system, this observable

shows the same behavior, so it is very robust with respect
to extracting path-length dependence. We, moreover, observe
that going to smaller systems makes extracting the path-length
dependence even more straightforward since the separation
between L and L2 lines becomes larger when going to smaller
systems, i.e., it increases for a factor of 2 when going from
Xe − Pb to Ar − Pb and O − Pb. This then motivates using
this observable across systems of different sizes and provides
another argument for the utility of high-p⊥ measurements at
the BSS at the LHC.

Finally, to address the reliability of this RAB
L observable, in

Fig. 3, we also show RAB
L , calculated by using full numerical

procedure stated above but if only collisional [5] (upper
curves) or radiative [15] (lower curves) energy losses are taken
into account—we here again concentrate on higher centrality
regions where Eqs. (2) and (4) are applicable. Within the
dynamical energy-loss model, collisional energy loss is close
to—although somewhat less than—linear (b ≈ 0.9) due to
finite-size effects [5]. From Fig. 3, we see that this path-length
dependence scenario is directly recovered where the approach
to the appropriate dashed line (indicating �L dependence)
is almost ideal. For the radiative energy loss due to the
LPM effect, path-length dependence approaches L2 for higher
p⊥ [15], and we see that, for such a scenario, RAB

L also
unambiguously recovers this tendency, although the spread of
curves for different centralities is somewhat larger compared
to the collisional energy-loss case. This, therefore, leads to
the conclusion that, in addition to being simple and robust,
RAB

L is also an accurate observable for extracting path-length
dependence.

Summary and outlook. Experimental measurements for
smaller collision systems at the future BSS at the LHC will
provide previously unprecedented opportunities to distinguish
between different energy-loss mechanisms and, consequently,
to better understand properties of created QGP. We here
proposed a new—simple, robust, and reliable—observable
for assessing the path-length dependence of the energy loss,
which is a main signature of high-p⊥ parton-medium in-
teractions. Based on our results, this observable can be
used to straightforwardly extract the path-length dependence
from experimental data, which can, consequently, be directly
compared with such dependencies from various theoretical
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FIG. 3. Predictions for RAB
L as a function of p⊥ are shown for charged hadrons where the darker sets of curves are obtained by using full
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models as a major test of our understanding of energy-loss
mechanisms.

Furthermore, our Rapid Communication also suggests that
(1 − RAA) might be a more suitable observable for the ex-
ploration of QGP than commonly used RAA as we have here
shown that it more directly reflects the underlying energy loss
of the jet traversing the QGP. Furthermore, (1 − RAA) observ-
able appears to be highly correlated to v2 (as noted in our re-
cent study [41]). Since high-p⊥ observables are shown [41,42]
to be sensitive to global QGP properties, we expect that
including the full-medium evolution models (together with

event-by-event fluctuations) into the high-p⊥ predictions and
providing a detailed joint study of high-p⊥ (1 − RAA) and
v2 (and possibly higher harmonics) for different collision
systems will prove to be an excellent tool for high-precision
QGP tomography, which is a future major goal of relativistic
heavy ion physics.
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