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Reliable identification of targets of bacterial regulators is necessary to understand
bacterial gene expression regulation. These targets are commonly predicted by
searching for high-scoring binding sites in the upstream genomic regions, which typically
leads to a large number of false positives. In contrast to the common approach, here
we propose a novel concept, where overrepresentation of the scoring distribution that
corresponds to the entire searched region is assessed, as opposed to predicting
individual binding sites. We explore two implementations of this concept, based
on Kolmogorov–Smirnov (KS) and Anderson–Darling (AD) tests, which both provide
straightforward P-value estimates for predicted targets. This approach is implemented
for pleiotropic bacterial regulators, including σ70 (bacterial housekeeping σ factor) target
predictions, which is a classical bioinformatics problem characterized by low specificity.
We show that KS based approach is both faster and more accurate, departing from
the current paradigm of AD being slower, but more accurate. Moreover, KS approach
leads to a significant increase in the search accuracy compared to the standard
approach, while at the same time straightforwardly assigning well established P-values
to each potential target. Consequently, the new KS based method proposed here,
which assigns P-values to fixed length upstream regions, provides a fast and accurate
approach for predicting bacterial transcription targets.

Keywords: direct target gene predictions, transcription factor binding site predictions, transcription regulation,
position specific weight matrices, transcription targets, transcription start starts, sigma70, bacterial gene
expression regulation

INTRODUCTION

Identifying targets of transcription regulators (transcription targets), such as genes that are directly
regulated by a given transcription factor, or transcribed by a certain σ factor, is a crucial step toward
understanding bacterial gene expression regulation. Such knowledge is in turn crucial for both
biotechnology applications and fundamental understanding of how bacteria respond to changing
environment (e.g., during host pathogen interactions).

The task of identifying transcription targets is typically exhibited by starting from either: (i)
large scale in vivo binding experiments such as ChIP-Seq (Wade et al., 2007; Park, 2009), (ii)
large scale in vitro binding data, such as high-throughput SELEX (Roulet et al., 2002; Jagannathan
et al., 2006) and protein binding microarrays (PBM) (Bulyk, 2006; Newburger and Bulyk, 2009),
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and (iii) smaller scale experiments, such as SELEX, primer
extension (for σ factors) and DNA footprinting (Green et al.,
1989; Tuerk and Gold, 1990), which are typically assembled
in databases such as TRANSFAC (Wingender, 2008), JASPAR
(Mathelier et al., 2016), or RegulonDB (Gama-Castro et al.,
2008). From these binding experiments, specificity of a given
transcription factor (TF) is then extracted through some of the
numerous methods that have been developed for this purpose.
Those methods can be based on either information theory
considerations (Stormo, 2000; Bulyk, 2004; Favorov et al., 2005;
Ozoline and Deev, 2006; Levitsky et al., 2014; Korostelev et al.,
2016), or on biophysical models (Stormo and Fields, 1998;
Djordjevic et al., 2003; Djordjevic and Sengupta, 2006; Stormo
and Zhao, 2010; Vilar, 2010; Djordjevic, 2013; Vilar and Saiz,
2013; Locke and Morozov, 2015), but in either case the inferred
DNA binding specificity is represented in a form of a matrix,
often called position specific weight matrix (PSWM). Note that,
in the case of biophysics based approaches, these PSWMs in
fact correspond to the so-called energy matrix (Djordjevic et al.,
2003; Stormo and Zhao, 2010). These methods, up to now, have
been shown to be able to extract the binding specificity with a
reasonable accuracy, particularly when the data are coming from
(controlled) high-throughput in vitro experiments (Bulyk, 2004,
2006; Djordjevic and Sengupta, 2006).

Once PSWMs are inferred, in prokaryotes they are used to
scan genomic regions upstream of potential targets (e.g., the
upstream intergenic regions), to find putative direct regulatory
targets (Kim and Ren, 2006). These putative targets are
next typically compared with the results of high-throughput
experiments, such as DNA microarray data, or crosschecked
with results of in vivo binding experiments (e.g., with the
locations of binding peaks from ChIP-Seq experiments). This
crosschecking may provide comprehensive information on the
underlying regulatory mechanism, e.g., to what extent binding of
the regulator under the given experimental conditions matches
with the putative list of the genomic regions to which it is
expected to bind. Such information is particularly useful when
the binding specificity is inferred from in vitro binding studies,
and is then crosschecked with independent experiments coming
from in vivo binding measurements (Kim and Ren, 2006; Stormo
and Zhao, 2010).

Despite the importance of accurately predicting direct targets
for a given regulator, the bulk of the research efforts concentrate
on more accurately inferring PSWM. On the other hand, a typical
procedure for identifying putative direct targets in bacteria is
rather simple, and involves scanning the upstream genomic
regions by the inferred PSWM (Kim and Ren, 2006; Wade
et al., 2007; Stormo and Zhao, 2010; de Jong et al., 2012). The
sites with maximal PSWM scores are then identified, and those
above certain thresholds are classified as putative targets. This
procedure, however, often results in low search accuracy, in
particular, in a very large number of false positives (Robison
et al., 1998; Stormo, 2000). In eukaryotes, methods that predict
clusters of transcription factor binding sites (TFBS) are also
used, in addition to predicting individual TFBS. However, to
successfully apply these methods, one often has to know which
TFs functionally interact (Hannenhalli, 2008). Also, a recent

evaluation shows that the clustering methods lead to lower
accuracy compared to individual TFBS predictions (Jayaram
et al., 2016). The major reason behind the apparent low accuracy
in the search of direct target genes is that individual high-
scoring binding sites can easily appear by random chance in
a sufficiently long genomic sequence, leading to so called non-
sites (Kim and Ren, 2006). While this problem may be, to some
extent, alleviated by negative selection acting on these non-
sites, this negative selection is likely small. Furthermore, another
problem, accurately assigning statistical significance to the targets
predicted in such approach is also not well explored. That is,
the maximal scoring sites are located in the tale of the weight
matrix score distribution, and accurately calculating this tale
requires doing an inverse Laplace transform of the corresponding
partition function, which, in itself, is an ill-resolved numerical
problem (Hertz and Stormo, 1999). Consequently, putative
targets above certain threshold are typically reported without
assigning statistical significance to the corresponding hits.

To address the problem of accurate transcription target
predictions, we here develop a new concept which is based
on the following hypothesis. We propose that, rather than
identifying individual sites with high weight matrix scores, a
better measure is assessing enrichment of the high scoring sites
over a certain background in the entire region that is searched.
This proposal then does not depend on individual high-scoring
sites (which can easily emerge by random), but instead on
comparing the weight matrix score distribution for the entire
searched region with a certain background distribution. Note that
this automatically accounts for the random occurrence of high-
scoring binding sites, since such random occurrences (non-sites)
would also appear in the background distribution. Moreover,
this hypothesis directly couples with elegant statistical methods
that allow determining statistical significance of a difference
between the two distributions, such as Kolmogorov–Smirnov
(KS) or Anderson–Darling (AD) tests. Therefore, these statistical
tests also allow straightforwardly assigning a well-established
statistical significance to the predicted direct targets, which also
addresses the other major deficiency of the usual approach
discussed above. Consequently, in contrast to the previous
approaches, we will here develop a method which is based on
assigning P values to fixed length upstream regions (e.g., the
upstream intergenic regions in bacteria), rather than picking up
only the best scoring PSWM matches (or their clusters).

However, significant questions emerge with regard to our
proposed novel concept:

(i) Can search based on this hypothesis indeed identify
direct targets with high accuracy? Does the classification
threshold, based on statistical significance assigned through
this approach, lead to high prediction accuracy?

(ii) What is the appropriate background (null distribution)?
(iii) What statistical method is more optimal to implement in

the problem, Kolmogorov–Smirnov, Anderson–Darling, or
perhaps a combination (hybrid) of these two approaches?

In this proof-of-the-concept paper, we will explore this new
method by predicting direct targets for bacterial pleiotropic
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regulators (σ70, CRP, FNR), which present a classical (currently
unresolved) bioinformatics problem characterized by low
prediction specificity. On the other hand, accurately predicting
transcription targets of bacterial regulators is crucial for
understanding bacterial gene expression regulation. Considering
bacterial regulators also allows a more straightforward
interpretation of the obtained results, as complicating issues such
as chromatin state/accessibility (Forties et al., 2011; Chen and
Bundschuh, 2014; Chereji and Morozov, 2014) that are present
in eukaryotes are largely absent here.

RESULTS AND DISCUSSION

Overrepresentation of PSWM Scoring
Distributions
We start by exploring the basic concept behind our hypothesis
that the distribution of PSWM scores is overrepresented in the
regions where binding of transcription regulators is expected,
and that the overrepresentation is absent in the regions where
they do not bind. This concept is illustrated by the upper panel

of Figure 1, where binding of a pleiotropic Escherichia coli
transcription factor CRP (also known as CAP) to the convergent
intergenic regions, and to the rest of the intergenic regions
(here called the “other intergenic regions”), is assessed. Note
that the convergent intergenic regions are located downstream
of both of the adjacent genes, while the other intergenic
regions are located upstream of at least one of the adjacent
genes. Therefore, there should be no CRP binding sites in
the convergent intergenic regions, while CRP binding sites
should be located in a subset of the other intergenic regions,
which are upstream of its regulatory targets. Accordingly, in
the upper left panel of Figure 1, we observe a significant
overrepresentation of CRP PSWM scores in the other intergenic
regions, while such overrepresentation is absent in the convergent
intergenic regions. Note that, in Figure 1, the background
distribution corresponds to randomized intergenic regions,
with the sequences randomized so as to preserve trinucleotide
frequencies. We obtain similar results (the middle panels)
for another E. coli pleiotropic transcription factor (FNR), i.e.,
we also observe an overrepresentation in the other intergenic
regions (though now smaller compared to CRP), and an

FIGURE 1 | The score distributions for CRP and σ70 transcription regulators. The (upper, middle, lower) correspond to CRP, FNR, and σ70, respectively. The left
panels correspond to the other intergenic regions (where functional binding is expected to appear), while the right panels correspond to the convergent intergenic
regions (where functional binding is not expected to appear). Other intergenic regions are located upstream of at least one of the adjacent genes, while convergent
intergenic regions are located downstream of both of the adjacent genes (by intergenic region we consider the entire sequence between the two adjacent genes). In
each figure, the actual and the randomized PSWM distributions are shown in black and gray, respectively. Note that the higher binding scores (closer to zero),
correspond to stronger predicted binders. The overrepresentation in the other intergenic regions for CRP and FNR is indicated by arrows.
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absence of overrepresentation in the convergent intergenic
regions.

On the other hand, a more complex case is presented in
the lower panels of Figure 1. Here, binding of the E. coli
σ70 factors to the other intergenic (the left panel) and the
convergent intergenic (the right panel) regions is assessed.
Note that bacterial σ factors ensure transcription initiation (i.e.,
provide signal for transcription start sites), and different σ

factors are related with transcription exhibited under different
conditions in a bacterium (Paget and Helmann, 2003; Feklístov
et al., 2014). In particular, σ70 is the housekeeping σ factor in
E. coli, which is associated with transcribing a large number
of bacterial genes under normal conditions (therefore having
a large regulon). We observe an absence of overrepresentation
in both the other and the convergent intergenic regions, in
fact a small underrepresentation in the high scoring tail for
the convergent intergenic regions can be observed. The absence
of the overrepresentation is likely a consequence of significant
negative selection on σ70 non-sites, as a subset of the other
intergenic regions (from which transcription of the downstream
genes is directed) has to be enriched with σ70 binding sites.

σ70 binding, in which no global overrepresentation is
observed, evidently corresponds to a more complex case
of the regulatory target recognition. Consequently, in the
results below, we will first concentrate on σ70, to demonstrate
utility of the method even in a more complicated scenario.
In addition, prediction of σ factor binding sites, and their
corresponding direct targets (i.e., genes that they transcribe) is a
classical (unresolved) bioinformatics problem that is considered
notoriously hard (Stormo, 2000; Towsey et al., 2008; Purtov
et al., 2014), but one that is crucial for understanding bacterial
transcription. Predictions of σ70 targets are moreover important
since RNA-seq experiments (which can map transcription start-
sites) are still rare in bacteria, and a number of transcription
start sites are active under non-standard conditions, which likely
differ from those used in the experiments (Feklístov et al., 2014).
Therefore, an additional motivation is to investigate whether our
approach can lead to reasonable predictions for such a difficult
problem. We will then come back to analyzing two other E. coli
pleiotropic regulators (CRP and FNR), which display the more
standard/expected binding score distributions.

Kolmogorov–Smirnov Based Approach
The main idea behind the new approach is to observe an
overrepresentation of PSWM score distribution for the entire
upstream genomic region of interest, with respect to a chosen
background (null) distribution. We then need to provide a
measure of the difference between the two scoring distributions
(corresponding to the upstream genomic regions, and the
background distribution), as well as a measure of statistical
significance for this difference. Assessing this difference can be
directly implemented through Kolmogorov–Smirnov (KS) test,
which is illustrated in Figure 2.

In the left panel, an example of an upstream intergenic region,
which is clearly enriched by σ70 binding sites, is shown. The
solid curve corresponds to the cumulative distribution function
(CDF), corresponding to PSWM scores of this intergenic region.

FIGURE 2 | Cumulative distribution functions corresponding to PSWM scores
for the upstream genomic regions (the solid blue curve), and the background
distribution (the dashed red curve) are shown in the figure. In the (left), an
intergenic region that is strongly enriched by σ70 binding sites, and that would
be reported as a direct target in the search, is shown. In the (right), an
extreme case of the upstream intergenic region, which is depleted of σ70

binding sites, is shown. P-values from KS are indicated in both panels.

Note that the usual KS measure of the difference between
the two distributions (which we here denote as D score) is
indicated in the figure. With respect to the D score, note that
we here use the one-sided KS test, i.e., we impose the condition
that CDF of the upstream genomic regions has to be above
the background distribution CDF, which is the condition that
corresponds to overrepresentation – i.e., the case of significant
underrepresentation being reported as a hit is excluded. KS
test also directly provides the P-value corresponding to this D
score, which in turn allows assessing statistical significance of the
potential target. On the other hand, the right panel presents an
example where the upstream intergenic region is depleted of σ70

binding sites. In this case, CDF of PSWM scores corresponding to
this depleted intergenic region is actually below the background
distribution, so that the gene downstream of this intergenic
region is clearly not reported as a direct target of σ70 (D score
is very close to zero in this case). Note that CDF of the upstream
intergenic region does not have to be below the background CDF
(as happens in the extreme case shown in the right panel), to be
excluded as a hit. That is, all hits with small D values, which are
statistically non-significant, are not reported as putative targets.

Enrichment of D Scores
To implement the KS based method, the choice of the
background (null) distribution becomes important. This is
actually already indicated in Figure 1, where we have seen that,
due to the negative selection, the distribution corresponding to
the randomized regions may not overlap with the distribution
in the regions where no binding happens. We here test two
choices of the background distributions: (A) the distribution
corresponding to the randomized regions, where the intergenic
regions are randomized, and their corresponding PSWM scoring
distribution is used as the background, (B) genomic regions
where functional binding is not expected, for which we use the
convergent intergenic regions, as explained in Figure 1. Note
that these two choices correspond, respectively, to the left (the
randomized regions) and the right (the convergent intergenic
regions) panel shown in Figure 3.
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FIGURE 3 | Enrichment of D scores for two background distributions. The (A,B) represent, respectively, the background distributions that correspond to the
randomized and the convergent intergenic regions. The open red and the solid blue histograms, respectively, correspond to the D score distributions for the positives
(the upstream intergenic regions with experimentally detected binding sites) and the putative negatives (the genomic regions deep inside E. coli ORF, where
functional σ70 binding does not appear). The difference between the blue and the red distributions is assessed by the P-value, indicated in each panel.

For each of these two choices of the background distributions,
the D score distribution is calculated in the following two cases:
(i) the red histogram, which corresponds to positives (i.e., the
upstream intergenic regions, which are experimentally known
to contain σ70 binding sites); (ii) the blue histogram: which
corresponds to putative negatives, i.e., the genomic regions where
σ70 binding should not appear. Specifically, we here use genomic
sequences deep inside ORF (coding sequences), where we expect
no initiation of transcription (i.e., no functional σ70 binding). We
here mark such regions as putative negatives.

We see a significant enrichment of D scores in the true positive
vs. putative negative regions, for both choices of the background
distributions (i.e., for both Figures 3A,B). However, we see that
the enrichment is clearly much higher when the background
distribution corresponds to the convergent intergenic regions,
as clearly indicated by the P-values in the Figures 3A,B. The
most likely reason is that the randomized regions do not capture
(possibly significant) negative selection that acts on σ70 binding
sites. That is, the functional binding, which one needs to detect,
comes on the ‘top’ of possibly a large number of non-sites
that are ‘deleted’ by the negative selection. Consequently, in the
further analysis, we will use the background distribution which
corresponds to the convergent intergenic regions.

ROC Curves and Comparison with
Anderson–Darling Test
Our next goal is to compare the accuracy of KS-based
approach, with the standard method for identifying putative
targets in bacteria. This method (which we further call “Max”)
involves scanning the upstream genomic regions by PSWM,
and classifying as putative targets those regions that contain
individual binding sites with PSWM scores above certain
threshold. To this end, we use the same positives and putative
negatives as introduced in the previous subsection, and the
null distribution that corresponds to the convergent intergenic
regions. In addition, as an alternative to KS test, the AD test
can also be used to detect overrepresentation of the binding

FIGURE 4 | ROC curves, σ70 binding. The ROC curves for σ70 direct targets,
which correspond to different tests, are marked in the legend. The positive
and the putative negative sets are the same as in Figure 3, and the false
negatives and the false positives are estimated with respect to these two sets,
where the convergent background distribution is used. In the legend, “Max”
corresponds to the standard method for direct target identification (see the
first paragraph of this subsection).

scores with respect to the null distribution. Consequently, we also
address how accurately the two tests (AD and KS) can predict
direct targets of σ70. The corresponding prediction accuracies are
assessed by ROC curves shown in Figure 4.

Importantly, we see that KS based approach (the solid red
curve) shows a substantially better performance compared to
the standard method (the dot-dashed green curve). In particular,
note that for the fixed number of false positives there are up
to three times fewer false negatives. Such a reduction in the
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FIGURE 5 | Comparison of sensitivity and specificity for KS and AD methods. The (left, right) correspond, respectively, to the sensitivity and specificity estimates,
obtained for the usual P = 0.05 confidence level. The red and the gray bars correspond to KS and AD methods respectively. The sensitivity and the specificity
estimates are shown for σ70 (the left bars), CRP (the central bars), and FNR (the right bars). The sensitivity and specificity are calculated as, respectively, TP/P, and
TN/N, where TP are true positives, TN true negatives, while P and N are the number of positives and negatives, respectively.

FIGURE 6 | ROC curves, CRP and FNR. The (A) and the (B) correspond, respectively, to the ROC curves for CRP and FNR. The true positive and the putative
negatives are as in Figure 3, and the convergent intergenic regions are used for the background distribution. Different tests which correspond to the shown ROC
curves are marked in the figure legend.

number of false positives is expected, i.e., in accordance with the
hypothesis we presented above, since individual sites with high
PSWM scores can easily appear by random. On the other hand,
their appearance is automatically taken into account through the
background distribution, i.e., a potential target will be classified
as a hit only if the binding scores in the entire searched region
are enriched (overrepresented) with respect to the background
distribution.

Furthermore, we see that KS (the solid red curve) leads to
a higher detection accuracy compared to AD (the dashed black
curve). Moreover, KS test is also much (∼400 times) faster in
predicting the direct targets. Consequently, in this application,
KS test is both faster and more accurate than AD. Note that this
runs opposite to the common paradigm, according to which AD
is slower, but more accurate compared to KS (Stephens, 1974).

To investigate the reason behind the (unexpected)
significantly higher accuracy obtained with KS method, in
Figure 5 we compare the sensitivity (the left panel) and the
specificity (the right panel) for KS and AD methods. The
comparison corresponds to the standard classification threshold
(P < 0.05) for both methods, and is provided for σ70 (analyzed in
Figure 4) and for CRP and FNR transcription factors (analyzed
in Figures 6, 7 below). We see that the sensitivity is high, and
about the same, for both methods (with AD displaying even
slightly larger sensitivity). On the other hand, in the right panel
of Figure 5, it can be seen that the specificity is much smaller for
AD method, which then leads to its lower accuracy compared
to KS method. To interpret this result, one should note that
we necessarily work with an approximation of the true null
distribution, e.g., the negative selection on non-sites in the
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convergent intergenic regions is likely not the same as in the
other intergenic regions, in which the target classification is
exhibited. Consequently, the main general advantage of AD
method, which is its large sensitivity, becomes a weakness in
this application, as small differences with respect to the null
distribution (that may also arise from its approximate nature),
are (conveniently) not captured by KS, but are classified as
statistically highly significant by AD test, leading to low AD
specificity (a large number of false positives).

Next, there comes a question if a combination of AD and KS
tests can provide an improved accuracy compared to either of
the two tests alone. With that respect, we made an algorithm
corresponding to a hybrid where the KS test is implemented
first to filter-out those upstream regions with clearly insignificant
P-values, i.e., regions where the actual distribution is clearly
too close to the null distribution. Afterward, AD is applied to
those regions with distributions that are more different to the
null distribution, for which AD performs better. From Figure 4,
we see that such AD-KS hybrid (the dashed blue curve) indeed
shows a substantially better accuracy compared to AD test alone,
and has a similar accuracy to KS test alone. This result is
consistent with the discussion above, i.e., when AD test alone
is used, a number of the upstream regions that are eliminated
by KS test, are falsely classified as targets by AD (since, due to
small specificity, AD proclaims even small difference between the
distributions as being significant). On the other hand, when in
AD-KS hybrid AD is applied only to those distributions that are
more different with respect to the null distribution (therefore
bypassing its main problem of low specificity), the accuracy
becomes similar to KS test. As an outlook, note that AD-KS
hybrid might be further improved by optimizing the threshold
for KS selection. We will further concentrate only on KS and
AD-KS tests, as they have a much better accuracy to AD test
alone.

We next come back to assessing KS approach for two more
standard binding score distributions (see Figure 1), exhibited by
CRP and FNR transcription regulators. We here construct the
positive and the putative negative sets in the same way as for σ70,
i.e., the positives correspond to the intergenic regions where the
transcription regulator binding is experimentally shown, while
the putative negatives correspond to the sequences deep inside
the coding regions, where functional binding is not expected. The
corresponding ROC curves are shown in Figure 6.

For FNR (Figure 6B), we obtain similar results as for σ70,
i.e., KS (and KS-AD hybrid) lead to a significantly better ROC
curve performance compared to the standard method (e.g., for
a fixed false negative number, there is a several times smaller
number of false positives for KS). On the other hand, we see
that for CRP the two curves (KS and the standard method)
have apparently similar performances, i.e., while the standard
method shows better performance at low false positive numbers,
it is outperformed by KS at higher false positives. The similar
performance of KS in the case of CRP is not surprising, i.e., is
likely a consequence of the fact that functional binding dominates
over non-sites in this case, as implied by the large PSWM score
overrepresentation exhibited in such case (see the upper left panel
in Figure 1). Consequently, the results in Figure 5 are in line with

FIGURE 7 | Prediction accuracy for the standard classification thresholds. The
threshold in KS search is based on the estimated statistical significance (the
usual P = 0.05 threshold is taken). The threshold in the PSWM search
corresponds to the standard choice where most (98%) of the experimentally
determined binding examples would be recovered in the search. The
prediction accuracy for these two thresholds is shown for σ70 (the left bars),
CRP (the central bars), and FNR (the right bars). The prediction accuracy is
calculated as (TP + TN)/(TP + FP + FN + TN), where TP (true positives), TN
(true negatives), FP (false positives) and FN (false negatives) are calculated for
the two methods at the corresponding threshold choices.

our main hypothesis that the main utility of KS approach is in
accurate classification of non-sites.

Statistical Significance and the
Classification Threshold
Independently from the ROC performance, KS has a significant
advantage of straightforwardly assigning statistical significance to
each predicted target, which is normally not available for standard
PSWM search (see Introduction). We here explore the utility
of such robust statistical significance estimate with the example
of assigning a classification threshold. With the KS approach a
natural threshold choice is provided by the P-value, typically set
to P = 0.05. As such a natural choice is normally not available
for standard PSWM search, the threshold is usually set so that
almost all (∼98%) of the experimentally determined binding
sites from which PSWM is constructed are recovered in the
search. In Figure 7, we explore the search accuracy associated
with the two choices of the binding threshold, i.e., P = 0.05 for
KS method and the standard threshold (see above) for PSWM
search.

We see that the threshold based on KS significance estimate
leads to much higher prediction accuracy for σ70 and FNR, which
is expected based on the significantly better ROC performance
of KS in these two cases (Figures 4, 6B). Moreover, in Figure 7
we also see notably higher prediction accuracy in the case of
CRP, where a similar ROC performance was observed for KS and
standard PSWM search (Figure 6A). Consequently, the notably
higher search accuracy for KS in the case of CRP observed in
Figure 7 is based on the more optimal choice of the classification
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threshold. This underlines the advantage of the threshold choice
based on the robust statistical significance measure.

CONCLUSION AND OUTLOOK

We here proposed a new computational approach to direct
regulatory target prediction. The approach is based on assessing
the significance of the difference between PSWM scoring
distributions, which correspond to the upstream genomic
regions, and the background distribution. As a consequence,
P-value is assigned to the entire upstream region, instead
of searching for individual high-scoring binding sites. We
implemented this approach through classical Kolmogorov–
Smirnov and Anderson–Darling tests, as well as through a
hybrid of these two approaches. Surprisingly, and contrary
to the current paradigm, we have seen that the approach
based on Kolmogorov–Smirnov test leads to a higher search
accuracy compared to Anderson–Darling based approach, while
also being (as expected) computationally less demanding.
While the hybrid approach has a substantially higher accuracy
compared to Anderson–Darling test, it does not outperform the
simpler Kolmogorov–Smirnov test. We interpreted this result by
Anderson–Darling test classifying small differences with respect
to the background distribution as true binding targets, leading to
low specificity of the approach.

We furthermore showed that the Kolmogorov–Smirnov based
approach leads to a substantially higher accuracy compared to
the standard approach, reducing the number of false positives
for several times. Moreover, a clear advantage of Kolmogorov–
Smirnov approach is that it straightforwardly assigns statistical
significance to any tested upstream intergenic region. We
demonstrated this advantage on the example of the classification
threshold, where we have seen that the robust significance
estimate provided by Kolmogorov–Smirnov leads to a much
more optimal threshold choice. We find that genomic regions,
where functional binding is not expected, provide better
background compared to randomized genomic regions. We here,
i.e., for analysis of prokaryotic transcription regulation, used
convergent intergenic regions for background distribution. In
eukaryotes the choice of background distribution would be more
complicated and remains to be investigated, where one possibility
would be to take genomic sequences far from coding regions
(where there may not be much TFBS).

To prove this new concept in the direct regulatory target
prediction, we tested it in the case of pleiotropic bacterial
regulators. This allowed a more straightforward interpretation
of the obtained results, while testing the method on some of
the classical problems otherwise characterized by low prediction
specificity. As an outlook, the method proposed here is of a
general significance, and it will be in the future also implemented
in the more complicated case of direct target prediction for
eukaryotic transcriptional regulators. Moreover, while the model
was here applied in the context of PSWM, more complex models
which take into account interdependences of nucleotides in TFBS
were also developed (Eggeling et al., 2015; Kulakovskiy et al.,
2016; Nettling et al., 2017). While these methods lead to a

better performance in some cases, more often (simpler) PSWMs
perform better, which is likely due to overfitting, i.e., due to a
limited number of TFBS from which the model is trained (Benos
et al., 2002; Nguyen and Androulakis, 2009). Therefore, despite
the limitations of PSWMs, they are still the leading approach in
TFBS search (Nguyen and Androulakis, 2009; Fazius et al., 2011).
In any case, the new approach proposed here does not depend on
the scoring method (i.e., if a classical PSWM, or a higher order
model, is used), since the approach is based on comparing the
distributions of the scores (i.e., is not limited by how the actual
scores are calculated). Consequently, the KS approach proposed
here might present a general method of choice for efficiently and
accurately predicting target loci of transcription regulators.

MATERIALS AND METHODS

Defining the Upstream Genomic Regions
The E. coli intergenic sequences are divided in two groups, where
binding of transcription regulators is expected (other intergenic
regions) and not expected (convergent intergenic regions). The
other intergenic regions, and the convergent intergenic regions,
include, respectively, those that are located upstream of at least
one adjacent gene, and downstream of both of the adjacent genes.

For the positive set in σ70 case, in KS, AD and KS-AD hybrid
searches, we take those E. coli intergenic sequences that contain
σ70 binding sites with experimental evidence from RegulonDB
database (Gama-Castro et al., 2011), which results in the total
of 263 upstream genomic regions. Similarly, for the positive set
in CRP and FNR case, we take these intergenic sequences with
experimental evidence of the regulator binding from RegulonDB
database. For the putative negative set, we use the same number of
sequences, with the same length, as those in the positive set, but
now sampled from ORF (coding sequences), where we exclude
50 bps at both 5′ and 3′ ends; this is done to exclude the flanking
sequences, in which σ70 binding sites are sometimes located.

For obtaining the randomized distribution, an ensemble
of randomized sequences was constructed, by sampling all
trinucleotide probabilities in the intergenic regions. The
randomized sequences were searched, and the corresponding
randomized scoring distributions are obtained, in the same
manner as for the upstream genomic regions, which is further
described below.

PSWM Scoring Distributions
CRP and FNR PSWM were constructed from the binding sites
assembled in DPInteract database (Robison et al., 1998), through
the standard information-theory based procedure (Stormo,
2000). σ70 PSWM were constructed starting from recent de novo
alignment (Djordjevic, 2011), where the promoter elements were
systematically aligned starting directly from the experimentally
determined TSS. Briefly, the alignment includes: −10 and −35
elements, spacer weights corresponding to variable spacer length
(between 15 and 19 bps), conserved sequences upstream of −10
element. PSWMs for CRP, FNR and σ70 search are provided
in Supplementary Table 1. Scores were assigned to each DNA
segment in the upstream genomic and the randomized sequences
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using these PSWM, from which the corresponding scoring
distributions were generated.

KS, AD, and KS-AD Hybrid Based
Searches
For KS based search, one-sided Kolmogorov-Smirnov test was
used. For each tested upstream intergenic region PSWM score
distribution was generated as described above, and compared
with an appropriate background distribution whose CDF was
constructed. This comparison results in P-value and D score
for each tested upstream genomic segment. The threshold on
D scores was then moved in order to change the number
of false positives and false negatives, and construct the ROC
curves.

For AD based search, the MATLAB based routine ‘adtest’
was used, where PSWM score distributions corresponding to
upstream genomic region, and the background distribution were
compared. For each tested upstream genomic region, P-value and
AD test statistics (‘adstat’) was sampled. The ROC curves were
constructed based on ‘adstat’ scores.

For KS-AD hybrid search, KS and AD tests were implemented
as described above, with KS test used first to exclude the
upstream intergenic regions with low difference between the
two distributions. A liberal P-value threshold of 0.5 was used
in this exclusion, so that only the upstream genomic regions
with very low significance are eliminated by KS test. The rest
of the upstream regions are then subjected to AD test, which
is used to calculate P-value and AD test statistics. The codes
for KS, AD and KS-AD hybrid approaches are available upon
request.
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