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It is hard to overstate the importance of a timely prediction of the COVID-19 pandemic

progression. Yet, this is not possible without a comprehensive understanding of

environmental factors that may affect the infection transmissibility. Studies addressing

parameters that may influence COVID-19 progression relied on either the total numbers

of detected cases and similar proxies (which are highly sensitive to the testing capacity,

levels of introduced social distancing measures, etc.), and/or a small number of analyzed

factors, including analysis of regions that display a narrow range of these parameters.

We here apply a novel approach, exploiting widespread growth regimes in COVID-19

detected case counts. By applying nonlinear dynamics methods to the exponential

regime, we extract basic reproductive number R0 (i.e., the measure of COVID-19

inherent biological transmissibility), applying to the completely naïve population in the

absence of social distancing, for 118 different countries. We then use bioinformatics

methods to systematically collect data on a large number of potentially interesting

demographics and weather parameters for these countries (where data was available),

and seek their correlations with the rate of COVID-19 spread. While some of the

already reported or assumed tendencies (e.g., negative correlation of transmissibility with

temperature and humidity, significant correlation with UV, generally positive correlation

with pollution levels) are also confirmed by our analysis, we report a number of both

novel results and those that help settle existing disputes: the absence of dependence on

wind speed and air pressure, negative correlation with precipitation; significant positive

correlation with society development level (human development index) irrespective of

testing policies, and percent of the urban population, but absence of correlation with

population density per se. We find a strong positive correlation of transmissibility on

alcohol consumption, and the absence of correlation on refugee numbers, contrary to

some widespread beliefs. Significant tendencies with health-related factors are reported,

including a detailed analysis of the blood type group showing consistent tendencies

on Rh factor, and a strong positive correlation of transmissibility with cholesterol levels.

Detailed comparisons of obtained results with previous findings, and limitations of our

approach, are also provided.

Keywords: COVID-19 transmissibility, environmental factors, basic reproduction number, COVID-19 demographic

dependence, COVID-19 weather dependence
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INTRODUCTION

The ancient wisdom teaches us that “knowing your adversary” is
essential in every battle—and this equally applies to the current
global struggle against the COVID-19 pandemic. Understanding
the parameters that influence the course of the pandemic is
of paramount importance in the ongoing worldwide attempts
to minimize the devastating effects of the virus which, to the
present moment, has already taken a toll of more than a million
lives (Dong et al., 2020), and resulted in double-digit recession
among some of the major world economies (World Bank, 2020a).
Of all such factors, the ecological ones (both abiotic such as
meteorological factors and biotic such as demographic and
health-related population properties) likely play a prominent role
in determining the dynamics of disease progression (Qu et al.,
2020).

However, making good estimates of the effects that general
demographic, health-related, and weather conditions, have
on the spread of COVID-19 infection is beset by many
difficulties. First of all, these dependencies are subtle and
easily overshadowed by larger-scale effects. Furthermore, as the
effective rate of disease spread is an interplay of numerous
biological, medical, social, and physical factors, a particular
challenge is to differentiate the dominating effects of local
COVID-19-related policies, which are both highly heterogeneous
and time-varying, often in an inconsistent manner. And this is
precisely where, in our view, much of the previous research on
this subject falls short.

There are not many directly observable variables that can be
used to trace the progression of the epidemics on a global scale
(i.e., for a large number of diverse countries). The most obvious
one—the number of detected cases—is heavily influenced both
by the excessiveness of the testing (which, in turn, depends
on non-uniform medical guidelines, variable availability of
testing kits, etc.) and by the introduced infection suppression
measures (where the latter are not only non-homogeneous but
are also erratically observed (Cohen and Kupferschmidt, 2020).
Nevertheless, the majority of the research aimed to establish
connections of the weather and/or demographic parameters
with the spread of COVID-19 seeks correlations exactly with
the raw number of detected cases (Adhikari and Yin, 2020;
Correa-Araneda et al., 2020; Fareed et al., 2020; Gupta et al.,
2020; Iqbal et al., 2020; Li et al., 2020; Pourghasemi et al.,
2020; Rashed et al., 2020; Singh and Agarwal, 2020). For the
aforementioned reasons, the conclusions reached in this way
are questionable. Other variables that can be directly measured,
such as the number of hospitalized patients or the number of
COVID-19 induced deaths (Pranata et al., 2020; Tosepu et al.,
2020; Ward, 2020), again depend on many additional parameters
that are difficult to take into account: level of medical care and
current hospital capacity, advancements, and changing practices
in treating COVID-19 patients, the prevalence of risk groups,
and even on the diverging definitions of when hospitalization
or death should be attributed to the COVID-19 infection. As
such, these variables are certainly not suitable as proxies of the
SARS-CoV-2 transmissibility per se.

On the other hand, as we here empirically find [and as
theoretically expected (Anderson and May, 1992; Keeling and

Rohani, 2011)] the initial stage of the COVID-19 epidemic (in
a given country or area) is marked by a period of a nearly
perfect exponential growth for a wide range of countries, which
typically lasts for about 2 weeks (based on our analysis of
the available data). One can observe widespread dynamical
growth patterns for many countries, with a sharp transition
between exponential, superlinear (growth faster than linear), and
sublinear (growth slower than linear) regimes (see Figure 1)—
the last two representing a subexponential growth. We here
concentrate on the initial exponential growth of the detected-
case data (marked in red in Figure 1), characterizing the period
before the control measures took effect, and with a negligible
fraction of the population resistant to infection. Note that dates
which correspond to the exponential growth regime (included
in Supplementary Table 1) are different for each country,
corresponding to the different start of COVID-19 epidemic in
those countries.

We use the exponential growth regime to deduce the basic
reproduction number R0 (Martcheva, 2015), following a simple
and robust mathematical (dynamical) model presented here. R0
is a straightforward and important epidemiological parameter
characterizing the inherent biological transmissibility of the
virus, in a completely naïve population, and the absence of
social distancing measures (Bar-On et al., 2020; Eubank et al.,
2020). To emphasize the absence of social distancing in the
definition (and inference) of R0 used here, the term R0,free is
also used, — for simplicity, we further denote R0 ≡ R0,free. R0
is largely independent of the implemented COVID-19 policies
and thus truly reflects the characteristics of the disease itself,
as it starts to spread unhampered through the given (social
and meteorological) settings. Namely, the exponential period
ends precisely when the effect of control measures kick in,
which happens with a delay of ∼10 days after their introduction

FIGURE 1 | COVID-19 growth regimes. Transitions of the growth patterns

(here shown for Italy) from exponential (red), to superlinear (blue) and sublinear

(green) regime. The three insets correspond to the log-linear scale

(exponential), log-log scale (superlinear), and linear-log scale (sublinear). Dots

correspond to detected infections, starting from 20.02.2020. In this study,

R0,free is extracted from the slope of the first (exponential, i.e., log-linear) inset,

corresponding to dates 29.02–13.03 in the case of Italy.
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(The Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020), corresponding to the disease latent
period, and to the time between the symptom onset and the
disease confirmation. Not only that very few governments
had enacted any social measures before the occurrence of a
substantial number of cases (Cohen and Kupferschmidt, 2020),
but also the length of the incubation period makes it likely that
the infection had been already circulating for some time through
the community even before the first detected case (and that
the effects of the measures are inescapably delayed in general).
Also, the transition from the exponential to the subsequent
subexponential phase of the epidemics is readily visible in
the COVID data (see Figure 1). Furthermore, R0 is invariant
to the particular testing guidelines, as long as these do not
significantly vary over the (here relatively short) studied period.
Note that in Figure 1 cumulative number of positive cases (also
known as cumulative infection incidence) is shown, which has
to monotonically increase—though with a decreasing rate, once
the infection starts to slow down, i.e., once the subexponential
growth (sublinear and superlinear regimes) is reached.

In the analysis presented here, we consider 42 different
weather, demographic, and health-related population factors,
whose analyzed ranges correspond to their variations exhibited in
118 world countries (not all of the parameters were available for
all of the countries, as discussed in Section “Demographic and
Weather Data Acquisition”). While some authors prefer more
coherent data samples to avoid confusing effects of too many
different factors (Adhikari and Yin, 2020; Correa-Araneda et al.,
2020; Fareed et al., 2020; Rashed et al., 2020; Singh and Agarwal,
2020; Tosepu et al., 2020), this consideration is outweighed by the
fact that large ranges of the analyzed parameters serve to amplify
the effects we are seeking to recognize and to more reliably
determine the underlying correlations. For example, while the
value of the HumanDevelopment Index (HDI, a composite index
of life expectancy, education, and per capita income indicators)
varies from 0.36 to 0.96 over the set of analyzed countries, this
range would drop by an order of magnitude (Global Data Lab,
2020) if the states of the US were chosen as the scope of the
study (other demographic parameters exhibit similar behavior).
The input parameters must take values in some substantial ranges
to have measurable effects on R0 (i.e., small variations may lead
to effects that are easily lost in statistical fluctuations).

The number of considered parameters is also significant,
especially when compared to other similar studies (Adhikari
and Yin, 2020; Copat et al., 2020; Fareed et al., 2020; Iqbal
et al., 2020; Rashed et al., 2020; Rychter et al., 2020; Singh and
Agarwal, 2020; Thangriyal et al., 2020; Tosepu et al., 2020). In a
model where a large number of factors are analyzed under the
same framework, consistency of the obtained results, in terms of
agreement with other studies, common-sense expectations, and
their self-consistency, becomes an important check of applied
methodology and analysis. Furthermore, a comprehensive and
robust analysis is expected to generate new findings and lead
to novel hypotheses on how environmental factors influence
COVID-19 spread. Overall, we expect that the understanding
achieved here will contribute to the ability to understand the
behavior of the pandemics in the future and, by the same token,

to timely and properly take measures in an attempt to ameliorate
the disease effects.

MODEL AND PARAMETER EXTRACTION

Modified SEIR Model and Relevant
Approximations
There are various theoretical models and tools used to
investigate and predict the progress of an epidemic (Keeling and
Rohani, 2011; Martcheva, 2015). We here opted for the SEIR
compartmental model, up to now used to predict or explain
different features of COVID-19 infection dynamics (Maier and
Brockmann, 2020; Maslov and Goldenfeld, 2020; Perkins and
España, 2020; Tian et al., 2020; Weitz et al., 2020). The model is
sufficiently simple to be applied to a wide range of countries while
capturing all the features of COVID-19 progression relevant for
extracting the R0 values. The model assumes dividing the entire
population into four (mutually exclusive) compartments with
labels: (S)usceptible, (E)xposed, (I)fected, and (R)ecovered.

The dynamics of the model (which considers gradual
transitions of the population from one compartment to the
other) directly reflects the disease progression. Initially, a healthy
individual has no developed SARS-CoV-2 virus immunity and
is considered as “susceptible.” Through contact with another
infected individual, this person may become “exposed”—
denoting that the transmission of the virus has occurred, but
the newly infected person at this point has neither symptoms
nor can yet transmit the disease. An exposed person becomes
“infected”—in the sense of becoming contagious—on average
after the so-called “latent” period which is, in the case of
COVID-19, approximately 3 days. After a certain period of
the disease, this person ceases to be contagious and is then
considered as “recovered” (from the mathematical perspective
of the model, “recovered” are all individuals who are no longer
contagious, which therefore also includes deceased persons). In
the present model, the recovered individuals are taken to be no
longer susceptible to new infections (irrespectively of whether
the COVID-19 immunity is permanent or not, it is certainly
sufficiently long in the context of our analysis).

Accordingly, almost the entire population initially belongs
to the susceptible class. Subsequently, parts of the population
become exposed, then infected, and finally recovered. SARS-
CoV-2 epidemic is characterized by a large proportion of
asymptomatic cases (or cases with very mild symptoms) (Day,
2020), which leads to a large number of cases that remain
undiagnosed. For this reason, only a portion of the infected will
be identified (diagnosed) in the population, and we classify them
as “detected.” This number is important since it is the only direct
observable in ourmodel, i.e., the only number that can be directly
related to the actual COVID-19 data.

This dynamic is schematically represented in Figure 2, and is
governed by the following set of differential equations:

dS

dt
= −

βSI

N
(1)

dE

dt
=

βSI

N
− σE (2)
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FIGURE 2 | Diagrammatic representation of the SEIR model with the added class of “Detected” patients. Individuals move (denoted by solid arrows) from Susceptible

to Exposed to Infected to Recovered, with the rates indicated above arrows in the figure. Some of the infected are detected (diagnosed/confirmed), indicated by the

dashed arrow.

dI

dt
= σE− γ I (3)

dR

dt
= γ I (4)

dD

dt
= εδI (5)

In the above equations, S, E, I, and R denote numbers
of individuals belonging to, respectively, susceptible, exposed,
infected, and recovered compartments, D is the cumulative
number of detected cases, while N is the total population.
Parameter β denotes the transmission rate, which is proportional
to the probability of disease transmission in contact between
a susceptible and an infectious subject. Incubation rate σ

determines the rate at which exposed individuals become infected
and corresponds to the inverse of the average incubation period.
Recovery rate γ determines the transition rate between infected
and recovered parts of the population, (i.e., 1/γ is the average
period during which an individual is infectious). Finally, ε

and δ are detection efficiency and the detection rate. All these
rate parameters are considered constant during the analyzed
(brief) period. Also, note that the constants in our model do
not correspond to transition probabilities per se, but rather to
transition rates (with units 1/time), so that e.g. γ and εδ do
not add to one. While rates in the model can be rescaled and
normalized to directly correspond to transition probabilities,
our formulation (with rates rather than probabilities) is rather
common (see e.g., Keeling and Rohani, 2011), and also has
a direct intuitive interpretation, where the transition rates
correspond to the inverse of the period that individuals spend in
a given compartment (see e.g., the explanation for γ above).

In the first stage of the epidemic, when essentially the entire
population is susceptible (i.e., S/N ≈ 1) and no distancing
measures are enforced, the average number of secondary
infections, caused directly by primary-infected individuals,
corresponds to the basic reproduction number R0. The infectious
disease can spread through the population only when R0 > 1
(Khajanchi et al., 2020a), and in these cases, the initial growth of
the infected cases is exponential. Though R0 is a characteristic of
the pathogen, it also depends on environmental abiotic (e.g., local
weather conditions), as well as biotic factors (e.g., prevalence of
health conditions, and population mobility tightly related to the
social development level).

Note that, as we seek to extract the basic reproduction
number R0 from the model for a wide range of countries,

the social distancing effects are not included in the model
presented above. That is, the introduced model serves only to
explain the exponential growth phase—note that this growth
regime characterizes part of the infection progression where
the social distancing interventions still did not take effect, and
where the fraction of resistant (non-susceptible) population
is still negligible. It is only this phase which is relevant for
extracting R0 that is used in the subsequent analysis. R0 should
not be confused with the effective reproduction number Re,
which takes into account also the effects of social distancing
interventions and the decrease in the number of susceptibles
due to acquired infection resistance. Re is not considered in
this work, as we are concerned with the factors that affect the
inherent biological transmissibility of the virus, independently
from the applied measures. That is, by considering R0 rather
than Re, we disentangle the influence of meteorological and
demographic factors on transmissibility (the goal of this study),
from the effects of social distancing interventions (not analyzed
here). The model can, however, be straightforwardly extended
to include social distancing measures, as we did in (Djordjevic
et al., 2020)—social distancing measures were also included
through other frameworks (Khajanchi and Sarkar, 2020; Maier
and Brockmann, 2020;Maslov andGoldenfeld, 2020; Perkins and
España, 2020; Samui et al., 2020; Sarkar et al., 2020; Tian et al.,
2020; Weitz et al., 2020). Such extensions are needed to explain
the subexponential growth that emerges due to intervention
measures (i.e., superlinear and sublinear growth regimes that
are illustrated in Figure 1 for Italy but are common for other
countries as well).

COVID-19 Growth Regimes
If we observe the number of total COVID-19 cases (e.g., in a
given country) as a function of time, there is a regular pattern that
we observe: the growth of the detected COVID cases is initially
exponential but slows down after some time—when we say it
enters the subexponential regime. The subexponential regime can
be further divided into the superlinear (growing asymptotically
faster than a linear function) and sublinear regime (the growth
is asymptotically slower than a linear function). This typical
behavior is illustrated, in the case of Italy, in Figure 1 above.
The transition to the subexponential regime occurs relatively
soon, much before a significant portion of the population gains
immunity, and is a consequence of the introduction of the
infection suppression measures.
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Inference of the Basic Reproduction
Number R0
In the initial exponential regime, a linear approximation to
the model can be applied. Namely, in this stage, almost the
entire population is susceptible to the virus, i.e., S/N≈1, which
simplifies the Equation (2) to:

dE

dt
= − σE+ βI. (6)

By combining expressions (3) and (6) one obtains:

d

dt

(

E
I

)

=

(

− σ β

σ −γ

) (

E
I

)

= A

(

E
I

)

, (7)

where we have introduced a two-by-two matrix:

A =

(

− σ β

σ −γ

)

(8)

The solution for the number of infected individuals can now
be written:

I (t) = C1 · e
λ+t + C2 · e

λ−t , (9)

where λ+ and λ− denote eigenvalues of the matrix A, i.e., the
solutions of the equation:

det (A− λI) = 0. (10)

The eigenvalues must satisfy:

∣

∣

∣

∣

−σ − λ β

σ −γ − λ

∣

∣

∣

∣

= 0,

leading to:

(λ + σ) · (λ + γ) − β · σ = 0. (11)

The solutions of (11) are:

λ± =
− (γ + σ) ±

√

(γ − σ)2 + 4βσ

2
. (12)

Since λ− < 0, the second term in (9) can be neglected for
sufficiently large t. More precisely, numerical analysis shows that
this approximation is valid already after the second day, while,
for the extraction of R0 value we will anyhow ignore all data
before the fifth day (for the analyzed countries, numbers of cases
before the fifth day were generally too low, hence this early data
is dominated by stochastic effects/fluctuations). Hence, I (t) is
proportional to exp(λ+t), i.e.:

I (t) = I (0) · eλ+t . (13)

By using β from (12) and R0 =
β
γ
(Keeling and Rohani, 2011;

Martcheva, 2015), we obtain:

R0 = 1+
λ+ · (γ + σ) + λ+

2

γ · σ
. (14)

From (13) and (5) we compute:

D (t) = ε · δ · I (0) ·
(eλ+t − 1)

λ+
. (15)

By taking the logarithm, the above expression leads to:

log (D (t)) = log (εδI(0)/λ+) + λ+ · t, (16)

from which λ+ can be obtained as the slope of the log (D (t))
function. From Equation (14), we thus obtain the R0 value as
a function of the slope of log (D (t)), where the latter can be
efficiently inferred from the plot of the number of detected
COVID-19 cases for a large set of countries.

The SEIR model and the above derivation of R0 assume that
the population belonging to different compartments is uniformly
mixed. Possible heterogeneities may tend to increase R0 values
(Keeling and Rohani, 2011). However, this would not influence
the results obtained below, as our R0 values are consistently
inferred for all analyzed countries by using the same model,
methodology, and parameter set. Moreover, our R0 values are
in agreement with the prevailing estimates in the literature
(Najafimehr et al., 2020).

Demographic and Weather Data
Acquisition
For the countries for which R0 was determined through
the procedure above, we also collect a broad spectrum of
meteorological and demographic parameter values. Overall, 118
countries were selected for our analysis, based on the relevance
of the COVID-19 epidemiological data. Namely, a country
was considered as relevant for the analysis if the number of
detected cases on June 15th was higher than a threshold value
of 1,000. A few countries were then discarded from this initial
set, where the case count growth was too irregular to extract any
results, possibly due to inconsistent or irregular testing policies.
As a source for detected cases, we used (World Bank, 2020b;
Worldometer, 2020).

In the search for factors correlated with COVID-19
transmissibility, we have analyzed overall 42 parameters, 11
of which are related to weather conditions, 30 to demographics
or health-related population characteristics, and one parameter
quantifying a delay in the epidemic’s onset (data provided in
Supplementary Tables 2–5). Not all of these parameters were
available for all of the considered countries. In particular, data
on the prevalence of blood types (Supplementary Table 4

in the Supplement) was possible to find for 83 of the 118
countries, while, primarily due to scarce data on pollutant
concentrations during the epidemics, almost 30% of entries in
Supplementary Table 5 in Supplement had to be left blank for
this category. Nevertheless, we opted to include these parameters
in our report: despite the lower number of values, some of these
parameters exhibited strong and highly statistically significant
correlations with R0, warranting their inclusion.

Our main source of weather data was project POWER
(Prediction of Worldwide Energy Resources) of the NASA
agency (NASA Langley Research Center, 2020). A dedicated
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Python script was written and used to acquire weather data
via the provided API (Application Programming Interface).
NASA project API allows a large set of weather parameters
to be obtained for any given location (specified by latitude
and longitude) and given date (these data are provided in the
Supplementary Table 7). From this source, we gathered data on
temperature (estimated at 2m above ground), specific humidity
(estimated at 2m above ground), wind speed (estimated at 2m
above ground), and precipitation (defined as the total column of
precipitable water). Data on air pressure (at ground level) and
UV index (international standard measurement of the strength
of sunburn-producing ultraviolet radiation) were collected via
similar API fromWorldWeather Online source (WorldWeather
Online, 2020), using the same averaging methodology. Since
we needed to assign a single value to each country (for
each analyzed parameter), the following method was used for
averaging meteorological data. In each country, a number of
largest cities1 were selected and weather data was taken for
the corresponding locations. These data was then averaged,
weighted by the population of each city, followed by averaging
over the period used for R0 estimation (more precisely, to
account for the time between disease transmission and the case
confirmation, we shifted this period 12 days into the past). The
applied averaging method used here can be of limited adequacy
in countries spreading over multiple climate zones, but is still
expected to provide reasonable single-value estimates of the
weather parameters, particularly since the averaging procedure
was formulated to reflect the most likely COVID-19 hotspots in
a given country.

Demographic data was collected from several sources.
Percentage of the urban population, refugees, net migration,
social and medical insurance coverage, infant mortality, and
disease (CVD, cancer, diabetes, and CRD) risk was taken from
the World Bank organization (World Bank, 2020b). The HDI
was taken from the Our World in Data source (Our World in
Data, 2020), while median age information was obtained from
the CIA website. The source of most of the considered medical
parameters: cholesterol, raised blood pressure, obesity, inactivity,
BSG vaccination as well as data on alcohol consumption and
smoking prevalence was World Health Organization (World
Health Organization, 2020). Data for blood types were taken
from the Wikidata web site. BUCAP parameter, representing
population density in the built-up area, was taken from GHS
Urban Center Database 2015 (European Commission Global
Human Settlement, 2020). The onset parameter, determining the
delay (in days) of the epidemic’s start, was inferred from COVID-
19 counts data. We used the most recent available data for all
the parameters.

RESULTS

The log (D (t)) function, for a subset of selected countries, is
shown in Figure 3. The obvious linear dependence confirms that

1This number was determined for each country by the following condition: the
total population of the cities taken into consideration had to surpass 10 percent of
the overall population of the country.

the progression of the epidemic in this stage is almost perfectly
exponential. Note that our model exactly reproduces this early
exponential growth (see Equation 13), happening under the
assumption of a small fraction of the population being resistant,
and the absence of the effect of social distancing interventions.
From Figure 3, we see that this behavior, predicted by the model
for the early stage of the epidemic, is also directly supported by
the data, i.e., the exponential growth in the cumulative number
of confirmed cases is indeed observed for a wide range of
countries. For each country, the parameter λ+ is directly obtained
as the slope of the corresponding linear fit of the log (D (t)),
and the basic reproduction number R0 is then calculated from
Equation (14). Here, we used the following values for the
incubation rate, σ = 1/3 day−1, and for the recovery rate γ =

1/4 day−1, per the commonly accepted values in the literature
(Bar-On et al., 2020). Note that possible variations in these two
values would not significantly affect any conclusions about R0
correlations, due to the mathematical properties of the relation
(14): it is a strictly monotonous function of λ+ and the linear
term λ+· (γ + σ) /γ ·σ dominantly determines the value of R0.

Supplementary tables contain the values for 42 variables,
for all countries. Correlations of each of the variables with R0
are given in Supplementary Table 6. Values for the Pearson
correlation coefficient are further shown below, though
consistent conclusions are also obtained by Kendall and
Spearman correlation coefficients (which do not assume a
linear relationship between variables). Correlation coefficients
were calculated in the usual manner: as the correlation of the
vector of parameter values with the vector of R0 values, by
taking into account all available data (for parameters that were
available across all of the countries, both of the vectors were 118
dimensional; if values were missing for certain countries, these
countries were simply ignored and lower-dimensional vectors
were compared).

The first set of results that corresponds to, roughly speaking,
general demographic data, is presented in Figure 4. The plot
in panel A shows the distribution of R0 vs. HDI values for
all countries, where a higher HDI score indicates the more
prosperous country concerning life expectancy, education, and
per capita income (Sagar and Najam, 1998). This parameter was
included in the study due to a reasonable expectation that a
higher level of social development also implies a higher level
of population interconnectedness and mixing (stronger business
and social activity, more travelers, more frequent contacts,
etc.), and hence that HDI could be related to the SARS-CoV-
2 transmissibility. Indeed, we note a strong, statistically highly
significant correlation between the HDI and the R0 value, with
R = 0.37, and p = 4·10−5, demonstrating that the initial
expansion of COVID-19 was faster in more developed societies.

The social security and health insurance coverage (INS)
“shows the percentage of population participating in programs
that provide old age contributory pensions (including survivors
and disability) and social security and health insurance
benefits (including occupational injury benefits, paid sick leave,
maternity, and other social insurance)” (World Bank, 2020b).
Reflecting the percentage of the population covered by medical
insurance and likely feeling more protected from the financial
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FIGURE 3 | Time dependence of the detected cases for various countries, during the initial period of the epidemic, shown on a log-linear scale. The linear fit of log(D)

shows that the spread of COVID-19 in this phase is very well approximated by exponential growth. Note that the values on axes are chosen differently for each

country, in order to emphasize the exponential character of the growth. For each country, the start and end dates of the exponential regime, together with the

extracted slope λ+, are provided in the Supplementary Table 1. ARG, Argentine; AUT, Austria; AZE, Azerbaijan; BEL, Belgium; BRA, Brazil; CHL, Chile; CRO,

Croatia; CZE, Czech Republic; EGY,Egypt; GAB, Gabon; GEO, Georgia; DEU, Germany; HUN, Hungary; ISL, Iceland; IND, India; IRN, Iran; IRQ, Iraq; ISR, Israel; CIV,

Cote d’Ivoire; MDG, Madagascar; MLI, Mali; MDA, Moldova; MAR, Morocco; NLD, Netherlands; PAN, Panama; PRT, Portugal; ROU, Romania; SAU, Saudi Arabia;

SEN, Senegal; SRB, Serbia; ESP, Spain; CHE, Switzerland; TUN, Tunis; GBR, Great Britain; UKR, Ukraine.

effects of the epidemics, this indicator shows a strong (R = 0.4)
and highly significant (p = 4·10−4) positive correlation with R0.
The percentage of urban population (UP) and BUCAP density
(BAP) are both included as measures of how concentrated is the
population of the country. While the UP value simply shows
what percentage of the population lives in cities, the BUCAP
parameter denotes the amount of built-up area per person. Of
the two, the former shows a highly significant positive correlation
with the COVID-19 basic reproduction number, whereas the
latter shows no correlation. Median age (MA) should be of
obvious potential relevance in COVID-19 studies since it is well

known that the disease more severely affects the older population
(Jordan et al., 2020). Thus, we wanted to investigate also if there
is any connection of age with the virus transmissibility. Our
results are suggestive of such a connection, since we obtained
a strong positive correlation of age with R0, with very high
statistical confidence. Infant mortality (IM) is defined as the
number of infants dying before reaching 1 year of age, per 1,000
live births. Lower IM rates can serve as another indicator of
the prosperity of a society, and it turns out that this measure
is also strongly correlated, but negatively, with R = −0.36 and
p = 8·10−5 (showing again that more developed countries, i.e.,
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FIGURE 4 | (A) R0 vs. HDI as an example of transmissibility dependence on demographic data (Pearson correlation denoted as R). (B) Pearson correlations of R0

with (from left to right): social security and health insurance coverage (INS), percentage of urban population (UP), BUCAP measure of population density (BAP), median

age (MA), infant mortality (IM), net migration (I-E), and percentage of refugee population by country or territory of asylum (RE). The statistical significance of each

correlation is indicated in the legend, while “ns” stands for “no significance.”

those with lower IM rates, have experienced more rapid spread
of the virus infection). Net migration (I-E) represents the 5-
year estimates of the total number of immigrants less the annual
number of emigrants, including both citizens and non-citizens.
This number, related to the net influx of foreigners, turns out
to be positively correlated, in a statistically significant way, with
R0. However, according to our data, the percentage of refugees,
defined as the percentage of the people in the country who are
legally recognized as refugees and were granted asylum in that
country, is not correlated with R0 at all.

Another set of parameters corresponds to medically-related
demographic parameters and is shown in the upper part of
Figure 5. The plot in panel A represents the average blood
cholesterol level (in mmol/L) in the population of various
countries, plotted against the value of R0. The two parameters
are strongly correlated, with R = 0.4, and p = 6·10−6. Another
demographic parameter with clear medical relevance, that has
a comparatively strong and significant positive correlation with
R0, is the alcohol consumption per capita (ALC), as shown
in panel B of Figure 5. Our data shows that R0 is also
positively correlated, with high statistical significance, with the
prevalence of obesity and to a somewhat smaller extent with
the percentage of smokers. Here, obesity is defined as having a
body-mass index over 30. A medical parameter that is strongly,
but negatively, correlated with R0, is a measure of prevalence
and severity of COVID-19 relevant chronic diseases in the
population (CD). This parameter is defined as “the percent of
30-year-old-people who would die before their 70th birthday
from any of cardiovascular disease, cancer, diabetes, or chronic
respiratory disease, assuming that s/he would experience current
mortality rates at every age and s/he would not die from any
other cause of death” (World Bank, 2020b). The percentage
of people with raised blood pressure (RBP) is also negatively

correlated with R0, though this correlation is not as strong and
as statistically significant as in the case of the CD parameter.
Here, raised blood pressure is defined as systolic blood pressure
over 140 or diastolic blood pressure over 90, in the population
older than 18. The percentage of smokers exhibits statistically
significant (though not large) positive correlation. Two medical-
demographic parameters that show no correlation with R0 in our
data are the prevalence of insufficient physical activity among
adults aged over 18 (IN) and BCG immunization coverage among
1-year-olds (BCG).

In Figure 5C we see that blood types are, in general, strongly
correlated with R0. The highest positive correlation is exhibited
by A− and O− types, with a Pearson correlation of 0.4 and 0.39,
and a very high statistical significance of p = 10−4 and p =

2·10−4, respectively. Taken as a whole, group A is still strongly
and positively correlated with R0, albeit with a bit lower statistical
significance (A+ type correlation has p-value two orders of
magnitude higher than A−). This is not so for group O that,
overall, does not seem to be correlated to R0 (O+ even shows a
certain negative correlation but without statistical significance).
Our data reveals a highly significant positive correlation also
for AB− subtype (R = 0.31, p = 0.003), while neither the AB+

subtype nor overall AB group is significantly correlated with
the basic reproduction number. Clear negative correlation is
exhibited only by B blood group (R = −0.31, p = 0.004), mostly
due to the negative correlation of its B+ subtype (R = −0.34,
p = 0.001), whereas B− subtype is not significantly correlated
with R0 in our data. If we consider the rhesus factor alone, we
again observe very strong correlations with R0 and with very
high statistical significance: Rh− and Rh+ correlate positively
(R= 0.4) and negatively (R=−0.4), respectively, with very high
statistical significance (p = 2·10−4). The tendency of Rh− and
Rh+ to, respectively, increase and decrease the transmissibility,
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FIGURE 5 | (A) R0 vs cholesterol level, as an example of a health-related parameter dependence. (B) Pearson correlation of R0 with (from left to right): alcohol

consumption per capita (ALC); the prevalence of obesity (OB); severity of COVID-19 relevant chronic diseases in the population (CD); a percentage of people with

raised blood pressure (RBP); a percentage of smokers (SM); the prevalence of insufficient physical activity among adults (IN); BCG immunization coverage among

1-year-olds (BCG) (C) Correlation of blood types with R0 in order: A, B, AB, and O (from left to right); overall value for that group, correlation only for Rh+ subtype of

the group, and correlation for Rh− subtype is shown. The two rightmost bars correspond to the overall correlation of Rh+ and the overall correlation of the Rh− blood

type with R0. The convention for representing the statistical significance of each correlation is the same as in Figure 4.

is therefore consistent with the results obtained for all four
individual blood-groups.

In Figure 6, the onset represents the delay of the exponential
phase and is defined, for each country, as the number of days
from February 15 to the start of the exponential growth of
detected cases. The motivation was to check for a possible
correlation between the delay in the onset of the epidemic and
the rate at which it spreads. Indeed, our data shows that such
correlation exists and that it is strong and statistically significant:
R=−0.48 and p= 4·10−8. In other words, the later the epidemic
started, the lower (on average) is the basic reproduction number.

Panel B of Figure 6 shows the correlation of R0 with some
of the commonly considered air pollutants. Our data reveal
a statistically significant positive correlation of R0 with NO2

and SO2 concentrations. Other pollutants—CO, PM2.5 (fine
inhalable particles, with diameters that are generally 2.5µm

and smaller), and PM10 (inhalable particles, up to 10 nm in
diameter)—show no statistically significant correlation with R0.

Next, we consider weather factors. Panels C and D of
Figure 6 show correlations of precipitation, temperature, specific
humidity, UV index, air pressure, and wind speed with the
reproduction number R0. Of these, precipitation, temperature,
specific humidity, and UV index show a strong negative
correlation, at a high level of statistical significance. Of the
other two parameters, both air pressure and wind speed are not
correlated at all with R0 in our data.

DISCUSSION

The present paper aimed to establish relations between
the COVID-19 transmissibility and a large number of
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FIGURE 6 | (A) R0 vs. the time delay of epidemic onset. (B) Pearson correlation of R0 with pollutants (from left to right): NO2, SO2, CO, PM2.5, and PM10 (inhalable

particles with 2.5 and 10µm, respectively). (C) R0 vs. precipitation. (D) Pearson correlation of R0 with (from left to right): temperature, specific humidity, UV index, air

pressure, and wind speed. The convention for representing the statistical significance of each correlation is the same as before.

demographic and weather parameters. As a measure of COVID-
19 transmissibility, we have chosen the basic reproduction
number R0—a quantity that is essentially independent of the
variations in both the testing policies and the introduced social
measures (as discussed in the Introduction), in distinction
to many studies on transmissibility that relied on the total
number of detected case counts [see e.g., (Adhikari and Yin,
2020; Correa-Araneda et al., 2020; Fareed et al., 2020; Gupta
et al., 2020; Iqbal et al., 2020; Li et al., 2020; Pourghasemi et al.,
2020; Rashed et al., 2020; Singh and Agarwal, 2020)]. We have
covered a substantial number of demographic and weather
parameters, and included in our analysis all world countries
that were significantly affected by the COVID-19 pandemic
(and had a reasonable consistency in tracking the early phase
of infection progression). While a number of manuscripts
have been devoted to factors that may influence COVID-19
progression, only a few used an estimate of R0 or some of its

proxies (Coccia, 2020; Contini and Costabile, 2020; Copiello
and Grillenzoni, 2020)—these studies were however limited to
China, and included a small set of meteorological variables, with
conflicting results obtained for their influence on R0. Therefore,
a combination of (i) using a reliable and robust measure of
COVID-19 transmissibility, and (ii) considering a large number
of factors that may influence this transmissibility within the
same study/framework, distinguishes our study over prior
work. We, however, must be cautious when it comes to further
interpretation of the obtained data. As always, we must keep
in mind that “correlation does not imply causation” and that
further research is necessary to identify possible confounding
factors and establish which of these parameters truly affect the
COVID-19 transmissibility. Due to the sheer number of studied
variables, an even larger number of parameters that might be
relevant but are inaccessible to study (or even impossible to
quantify), as well as due to possible intricate mutual relations of
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the factors that may influence COVID-19 transmission, this is a
highly non-trivial task. While we postpone any further analysis
in this direction to future studies, we will, nevertheless, consider
here the possible interpretations of the obtained correlations,
assuming that they also probably indicate the existence of at
least some causation. We below provide a detailed comparison
between our results and previous findings. While a detailed
discussion is presented, despite our best effort, we may have
missed some of the relevant references due to an extremely
rapidly developing field. Nevertheless, we point out a clear
distinction of our work with previous studies, as outlined in
this paragraph.

We will first consider the demographic variables presented
in Figure 4. The obtained correlation of the HDI with the
basic reproduction number is both strong and hardly surprising.
The level of prosperity and overall development of a society
is necessarily tied with the degree of population mobility and
mixing, traffic intensity (in particular air traffic), business and
social activity, higher local concentrations of people, and other
factors that directly or indirectly increase the frequency and range
of personal contacts (Gangemi et al., 2020), rendering the entire
society more vulnerable to the spread of viruses. In this light, it
is reasonably safe to assume that the obtained strong and highly
statistically significant correlation of HDI with R0 reflects a truly
causal connection. However, some authors offer also a different
explanation: that higher virus transmission in more developed
countries is a consequence of more efficient detection of COVID-
19 cases due to the better-organized health system (Gangemi
et al., 2020)—but since our R0 measure does not depend on
detection efficiency, presented results can be taken as evidence
against such hypothesis.

The interpretation is less clear for other demographic
parameters, for example, the percentage of the population
covered by medical and social insurance programs (INS). While
there seem to be no previous studies discussing this parameter,
one possibility is to attribute its strong positive correlation with
R0 to a hypothetical tendency of population to more easily
indulge in the epidemiologically-risky behavior if they feel well-
protected, both medically and financially, from the risks posed
by the virus; conversely, that the population that cannot rely
on professional medical care in the case of illness is likely to be
more cautious not to contract the virus. The other is, of course,
to see this correlation as an indirect consequence of the strong
correlation of this parameter with HDI—which is also, almost
certainly, the underlying explanation of the infant mortality (IM)
correlation, where low mortality ratios point to a better medical
system, which goes hand in hand with the overall prosperity and
development of the country (Ruiz et al., 2015) (thus the negative
correlation with R0).

Similarly, the strong positive correlation of median age (MA)
with R0 might be a mere consequence of its clear relation
with the overall level of development of the country (Gangemi
et al., 2020), but it can be also considered in the light of the
fact that clinical and epidemiological studies have unanimously
shown that the elderly are at higher risk of developing a more
severe clinical picture, and our result may indicate that the virus
also spreads more efficiently in the elderly population. Possible

explanations may include: drugs frequently prescribed to this
population that increase levels of ACE2 receptors (Shahid et al.,
2020), a general weakening of the immune system with age
leading to a greater susceptibility to viral infections (Pawelec and
Larbi, 2008), and a large number of elderly people grouped in
nursing homes, where the virus can expand very quickly (Kimball
et al., 2020).

The correlation of population density with R0, or the lack
of thereof, is more challenging to explain. Naively, one could
expect that COVID-19 spreads much more rapidly in areas with
a large concentration of people, but, if exists, this effect is not
that easily numerically captured. As the standard population
density did not show any correlation with the reproduction
number R0 (not shown), we explored some more subtle variants.
Namely, the simplest reason why the data shows no correlation
of R0 with population density would be that the density,
calculated in the usual way, is too averaged out: the most
densely-populated country on our list, Monaco, has roughly
10,000 times more people per square kilometer than the least
densely-populated Australia. However, Melbourne downtown
has a similar population density as Monaco and far more
people, so one would expect no a priori reason that its infection
progression would be slower (and the R0 rate for Australia as a
whole will be dominantly determined by the fastest exponential
expansion occurring anywhere on its territory). For this reason,
we included the BUCAP parameter into the analysis, which
takes into account only population density in built-up areas.
Surprisingly, even this parameter did not exhibit any statistically
significant correlation. Actually, several studies may serve as
examples showing that the correlation of population density
with the rate of COVID-19 expansion can be expected only
under certain conditions since the frequency of contacts between
people is to a large extent modulated by additional geographical,
economic, and sociological factors (Berg et al., 2020; Carozzi,
2020; Pourghasemi et al., 2020; Rashed et al., 2020). Our observed
absence of a correlation could be therefore expected and possibly
indicates that such a correlation should be sought at the level
of smaller populated areas—for example, individual cities (Yu
et al., 2020). This conclusion is somewhat supported by the
obtained highly significant and strong positive correlation of
R0 with the percentage of the population living in cities (UP)
and which probably reflects the higher number of encounters
between people in a more densely populated, urban environment
(Li et al., 2020). It is also possible that virus spread might have
a highly non-linear dependence on the population density—
namely, that an outbreak in a susceptible population requires
a certain threshold value of its density, while below that value
population density ceases to be a significant factor influencing
virus (Scheffer, 2009; Carozzi, 2020; Coro, 2020).

Another demographic parameter that exhibits a significant
correlation with R0 in our data is the net migration (I-E),
denoting the number of immigrants less the number of
emigrants. Unlike this number, which shows a positive
correlation, the number of refugees (RE) seems not to be
correlated at all. By definition, migrants deliberately choose to
move to improve their prospects, while refugees have to move
to save their lives or preserve their freedom. Migrants (e.g., in
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economic or academic migration), arguably tend to stay in closer
contact with the country of their origin and have more financial
means for that, which likely contributes to more frequent border
crossings and more intensive passenger traffic (Fan et al., 2020),
thereby promoting the infection spread. On the other hand,
refugees are mostly stationed in refugee camps, there is less
possibility of spreading the virus outside through contacts with
residents, but there is a high possibility of escalation of the
epidemic within camps with a high concentration of people
(Hargreaves et al., 2020). We did not find any other attempt
in the literature to examine this issue. In any case, our results
demonstrate that refugees are certainly not a primary cause
of concern in the pandemics, contrary to fears expressed in
some media.

Of the medical factors, the strongest correlation of R0 is
established with elevated cholesterol levels, as shown in Figure 5.
Cholesterol may be associated with a viral infection and further
disease development through a complex network of direct and
indirect effects. In vitro studies of the role of cholesterol in virus
penetration into the host body, done on several coronaviruses,
indicate that its presence in the lipid rafts of the cell membrane is
essential for the interaction of the virus with the ACE2 receptor,
and also for the latter endocytosis of the virus (Radenkovic et al.,
2020). Obesity prevalence (OB) also exhibits a highly significant,
though somewhat weaker correlation with R0, which might be
a consequence of the common connection between obesity and
cholesterol: in principle, obesity might be a relevant factor in
the COVID-19 epidemic exactly due to the effects of cholesterol
on SARS-CoV-2 susceptibility. Of course, other effects might
be at play, e.g., the fact that the adipose tissue of obese people
excessively produces pro-inflammatory cytokines (Sattar et al.,
2020). In the case of obesity, a simple explanation via relation
to HDI is not available, since obesity does not show a simple
correlation with the society development (Haidar and Cosman,
2011). Overall, while the correlation of obesity with a more severe
prognosis in COVID-19 is well established in the literature, its
relation to COVID-19 transmissibility is only mentioned in Li
et al. (2020) and hitherto unexplained.

Often related to obesity is also raised blood pressure (RBP),
and we have discovered that this factor is also correlated, at
high statistical significance, with R0. While this seems to be
the first study correlating high blood pressure with the SARS-
CoV-2 transmission rate, it is known that, based on clinical
studies, RBP appears to be a risk factor for hospitalization and
death due to COVID-19 (Ran et al., 2020a; Schiffrin et al.,
2020). In this light, it might be surprising that the correlation
between RBP and R0 turns out to be negative. On the other
hand, this result supports the existing hypothesis about the
beneficial effect of ACE inhibitors and ARBs (Ran et al., 2020a;
Schiffrin et al., 2020) (standardly used in the treatment of
hypertension). Similarly unintuitive correlation we report in
the case of chronic diseases that are known to be relevant
for the COVID-19 outcome. Namely, our data show, at very
high statistical significance, a strong negative correlation of
R0 with the risk of death from a batch of chronic diseases
(cardiovascular disease, cancer, diabetes, and chronic respiratory
disease), agreeing in this regard with some recent research

(Chiang et al., 2020; Li et al., 2020). These diseases are identified
as relevant comorbidities in the context of COVID-19, leading
to a huge increase in the severity of the infection and poorer
prognosis (An et al., 2020; Zheng et al., 2020) and, therefore, the
discovered negative correlation comes as a surprise—particularly
when contrasted to the positive correlation of obesity (where both
are recognized risk factors in COVID-19 illness). One possible
explanation is that the correlation may be due to potentially
lower mobility of people with chronic diseases compared to the
general mobility of the population. Additionally, it is possible that
these people, being aware to belong to a high-risk group, behaved
more cautiously even before the official introduction of social
distancing measures.

According to our analysis, the prevalence of certain health-
hazard habits is also significantly correlated to COVID-19
transmissibility. Chronic excessive alcohol consumption has, in
general, a detrimental effect on immunity to viral and bacterial
infections, which, judging by the strong positive correlation we
obtained, most likely applies also to SARS-CoV-2 virus infection.
This correlation contradicts the belief that alcohol can be used
as a protective nostrum against COVID-19, which has spread in
some countries and even led to cases of alcohol poisoning (Chick,
2020).

Regarding the impact of smoking on SARS-CoV-2 virus
infection—the results are controversial (Chatkin and Godoy,
2020). The positive correlation of smoking with COVID-19
transmissibility that we obtained seems to support the reasoning
that, since the SARS-CoV-2 virus enters cells by binding to
angiotensin-converting enzyme 2 (ACE2) receptors and that the
number of these receptors is significantly higher in the lungs of
smokers, the smokers will be more affected and easily infected
(Brake et al., 2020; Hoffmann et al., 2020). Accordingly, our result
contradicts the hypothesis that a weakened immune response of
smokers to virus infection may prove beneficial in the context
of inflammation caused by intense cytokine release (Garufi et al.,
2020).

Another result that addresses the association of unhealthy
lifestyle with greater susceptibility to SARS-CoV-2 infection is
the slight positive correlation we obtained for the prevalence of
insufficient physical activity (IN) in adults, which is however not
statistically significant. In this sense, in the case of COVID-19,
we could not fully confirm the findings from (Jurak et al., 2020),
who found that physical activity significantly reduces the risk of
viral infections.

Despite the recent media interest (Gallagher, 2020), our
findings neither could confirm that BCG immunization has any
beneficial effect in the case of COVID-19, at least as far as
reducing the risk of contracting and transmitting the disease is
concerned. While it is known that the BCG vaccine provides
some protection against various infectious agents, unfortunately,
there is no clear evidence for such an effect against SARS-
CoV-2 (O’Neill and Netea, 2020). Our analysis suggests that
BCG immunization simply does not correlate with SARS-CoV-2
virus transmission.

SARS-CoV-2 target cells are typically capable of synthesizing
ABH antigens and certain arguments exist, both theoretical
and experimental, for a potential relation of blood groups
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with COVID-19 progression and transmission (Guillon et al.,
2008; Dai, 2020; Gérard et al., 2020). While the results of
epidemiological studies on COVID-19 patients mostly support
the proposed effect of blood groups on the development of
COVID-19 disease, the relationship between virus transmission
and blood group prevalence and Rh phenotype has been
significantly less studied. Our analysis showed strong positive
correlations of virus transmission with the presence of A blood
group and Rh− phenotype, as well as strong negative correlations
for B blood group and Rh+ phenotype, while for AB and O blood
group no significant correlations were obtained (Figure 5C). This
result coincides significantly with the correlations obtained in
a study conducted for 86 countries (Ansari-Lari and Saadat,
2020). However, another study focused on hospitalized patients
in Turkey reported that the Rh+ phenotype represents a
predisposition to infection (Arac et al., 2020), contradicting our
findings. Similar results regarding the Rh factor were obtained
in a study (Latz et al., 2020) on hospitalized patients in the US
(this study further reported no correlation of blood types with
the severity of the disease). One way to reconcile these results
with ours would be to speculate that the virus is more efficiently
transmitted in a population with a higher proportion of Rh−

phenotype because these people show a milder clinical picture
compared to Rh+, so their movement is not equally limited,
which is why they have more ability to pass on the infection.

Our data (Figure 6A) shows a strong negative correlation with
the date of the epidemic onset. Curiously, it seems that the later
the epidemic started in a given country, it is more likely that
the disease expansion will be slower. Instead of interpreting this
result as an indication that the virus has mutated and changed its
properties over such a short period, we offer the following simpler
explanation: pandemic reached first those countries that are most
interconnected with the rest of the world (at the same time,
those are the countries characterized by great mobility of people
overall), so it is expected that also the progression of the local
epidemics in these countries is more rapid. Another contributing
factor could be the effect of media, which had more time to raise
awareness about the risks of COVID-19 in the countries that were
hit later (Khajanchi et al., 2020b).

Another segment of our interest were air pollutants, shown
in Figure 6B. Air pollution can have a detrimental effect on
the human immune system and lead to the development (or
to worsening) of respiratory diseases, including those caused
by respiratory viral infections (Becker and Soukup, 1999; Copat
et al., 2020). Several papers have already investigated air pollution
in the context of COVID-19 and reported a positive correlation
between the death rate due to COVID-19 and the concentration
of PM2.5 in the environment (Wu et al., 2020; Yao et al., 2020c).
Positive correlations were also found for the spread of the SARS-
CoV-2 virus, but mainly by considering daily numbers of newly
discovered cases—a method that, as we have already argued, may
strongly depend on testing policies, as well as on state measures
to combat the epidemic (Copat et al., 2020). It has been suggested
that virus RNA can be adsorbed to airborne particles facilitating
thus its spread over greater distances (Coccia, 2020; Setti et al.,
2020), but these arguments were contested by examination of air
samples inWuhan (Contini and Costabile, 2020; Liu et al., 2020).

The latter conclusions concur with the results of a study in which
no correlation was obtained between the basic reproductive
number of SARS-CoV-2 infection for 154 Chinese cities and the
concentration of PM2.5 and PM10 particles, while the correlation
of these factors with the death rate (CFR) was shown (Ran
et al., 2020b). The statistically insignificant and relatively weak
correlations we obtained for PM2.5 and PM10 pollutants also
do not support the hypothesis of a potentially significant role
of these particles in the transmission of this virus. In contrast,
significant positive correlations were shown by our analysis
for concentrations of NO2, SO2, and CO in the air (although
the correlation for CO is not statistically significant), which is
generally supported by the results of other studies. For example,
a positive correlation of NO2 levels with the basic reproductive
number of infection was obtained from data for 63 Chinese cities
(Yao et al., 2020a). Also, it has been shown that the number
of detected cases of COVID-19 in China is strongly positively
correlated with the level of CO, while in Italy and the USA
such correlation exists with NO2 (Pansini and Fornacca, 2020).
The mentioned study failed to establish a clear correlation with
the level of SO2. Possible mechanisms of interaction were also
proposed (Daraei et al., 2020). Also, it is important to emphasize
that the atmospheric concentration of NO2 strongly depends on
the levels of local exhaust emissions, so its correlation with virus
transmission can be interpreted by the connection with the urban
environment, characterized by more intensive traffic (Goldberg
et al., 2020).

Finally, we have also obtained some interesting correlations of
the meteorological parameters with R0, shown in Figures 6C,D.
The statistically very highly significant negative correlation of
the basic reproductive number of SARS-CoV-2 virus infection
with both the mean temperature and humidity obtained in
our research (Figure 6D) is consistent with the results of other
relevant papers, e.g., (Mecenas et al., 2020). For example, a similar
correlation was obtained in a study that analyzed COVID-19
outbreak in the cities of Chile—a country that covers several
climate zones, but where it is still safe to assume that social
patterns of behavior and introduced epidemic control measures
do not drastically differ throughout the country (Correa-Araneda
et al., 2020). Effectively the same conclusion—that fewer COVID-
19 cases were reported in countries with higher temperatures
and humidities—was reached in a study covering over 200
countries in the world (Iqbal et al., 2020). While an established
correlation between virus transmission and a certain factor is
not, in general, a telltale sign of a direct causal relationship
between them, in the case of temperature and humidity such
connection is firmly indicated also by results of experimental
research (Lowen et al., 2007; Casanova et al., 2010; Chan et al.,
2011; van Doremalen et al., 2020). Nevertheless, some studies
yielded different conclusions, most likely due to the method
of calculating R0 or due to choosing a small/uninformative
sample of populations in which the number of infected cases
was monitored (Guo et al., 2020; Lin et al., 2020; Yao et al.,
2020b). For example, a study focused on the suburbs of New
York, Queens, obtained a positive correlation between virus
transmission and temperature, which seems unexpected given
the prevailing observations of other studies (Adhikari and Yin,
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2020). This result is most likely a consequence of analyzing data
for a small area (Queens only) where the temperature varies in
a relatively narrow range of values, as well as correlating the
number of detected cases, which may be sensitive to variations
in the testing procedure.

Another environmental agent that can destroy or inactivate
viruses is UV radiation from sunlight, and the properties of a
particular virus determine how long it can remain infectious
when exposed to radiation. For example, epidemics of influenza
have a seasonal character precisely due to the susceptibility of
influenza viruses to UV radiation (Sagripanti and Lytle, 2007).
Our analysis found, at very high statistical significance, a strong
negative correlation between the transmission of the SARS-CoV-
2 virus and the intensity of UV radiation, which is consistent
with the results of other studies obtained for the cities of Brazil
and the provinces of Iran (Ahmadi et al., 2020; Mendonça et al.,
2020). It is worth mentioning that lower temperatures, humidity,
and sunlight levels usually occur in combination and directly
affect not only the virus but also the human behavior, so the
observed higher transmission of the virus in such conditions can
alternatively be interpreted by indirect effects of other factors that
act together in cold weather, such as more time spent indoors
where the virus spreads more easily, or weakening of the immune
system that increases susceptibility to infections (Abdullahi et al.,
2020).

While the results related to COVID-19 correlations with
temperature, humidity, and UV radiation are fairly frequent in
the literature, this is less so for the results on the precipitation
levels. Very few other studies have examined the association
of precipitation with SARS-CoV-2 transmission, with either no
correlation found (Pourghasemi et al., 2020), or looking at
precipitation as a surrogate for humidity and generally receiving
a negative correlation with infection rate (Araujo and Naimi,
2020; Coro, 2020). Our results, however, shown in Figure 6D,
confirm natural expectations: just like humidity, the precipitation
exhibits a strong negative correlation with R0, only slightly lower
than in the case of T, H, and UV, at a very high level of
statistical significance. Such results also concur with some general
conclusions about the behavior of similar viruses (Agrawal et al.,
2009; Pica and Bouvier, 2012).

Our analysis did not reveal any statistically significant
correlation either between the wind speed or between air pressure
and SARS-CoV-2 transmissibility. In the case of wind speed,
this result agrees with the findings in some other papers (Gupta
et al., 2020; Oliveiros et al., 2020). A positive correlation of
wind speed with COVID-19 transmissibility was obtained in
a study in Chilean cities, but, as the authors themselves note,
the interpretation of the effect of this factor is complicated by
its observed significant interaction with temperature (Correa-
Araneda et al., 2020). The role of wind in transmitting the
virus to neighboring buildings is predicted by the SARS virus
spread model within the Amoy Gardens residential complex
in Hong Kong, but such an effect may relate to local air
currents and virus transmission over relatively short distances
and does not imply a correlation of mean wind speeds in
the area with virus transmission (McKinney et al., 2006; Pica
and Bouvier, 2012). As for the air pressure, the potential
connection is hardly at all investigated in the literature. An

exception is a study (Cambaza et al., 2020) reporting a positive
correlation of air pressure with the number of COVID-19 cases
in parts of Mozambique, but our results do not confirm such
a conclusion.

CONCLUSION

While there is by now a significant amount of research on a
crucial problem of how environmental factors affect COVID19
spread, several features set this analysis apart from the existing
research. First is the applied methodology: instead of basing
analysis directly on the number of detected COVID-19 cases
(or some of its simple derivatives), we employ an adapted
SEIR model to extract the basic reproduction number R0 from
the initial stage of the epidemic. By taking into account only
data in the exponential growth regime, i.e., before the social
measures took effect (as explained in the “Methods” section), we
ensured that the correlations we have later identified were not
confounded with the effects of local COVID-19 policies. Even
more importantly, our method is also invariant to variations in
COVID-19 testing practices, which, as is well known, used to vary
in quite an unpredictable manner between different countries.
Another important factor is the large geographical scope of
our research: we collected data from 118 countries worldwide,
more precisely, from all the countries that were above a certain
threshold for the number of confirmed COVID-19 cases (except
for several countries with clearly irregular early growth data).
The third factor was the number of analyzed parameters: we
calculated correlations for the selected 42 different variables (of
more than a hundred that we initially considered overall) and
looked for viable interpretations of the obtained results.

These results should also help in resolving some of the existing
disputes in the literature. For example, our findings indicate that
correlation of HDI with R0 is not a consequence of the COVID-
19 testing bias, as was occasionally argued. Of the opposing
opinions, our data seem to support assertions that blood types
are indeed related to COVID-19 transmissibility, as well as
arguments that the higher prevalence of smoking does increase
the virus transmissibility (though weakly). On the other hand,
in the dispute about the effects of the pollution, our correlations
give an edge to claims that there is no correlation between PM2.5
and PM10 particles and transmissibility (whereas we agree with
the prevailing conclusions about the positive correlation of other
considered pollutants). In the case of the effects of the wind,
based on the obtained results we tend to side with those denying
any connection. In certain cases our findings contradict popular
narratives: there are no clear indications that either number of
refugees or physical inactivity intensifies the spread of COVID-
19. Unfortunately, our data also suggest that BCG immunization
may not help in subduing the epidemic. Additionally, the
obtained correlations hint to possible new alleys of research, e.g.,
those that would help us understand the connection between
cholesterol levels and SARS-CoV-2 transmissibility.

Overall, we believe that the presented results can be a useful
contribution to the ongoing attempts to better understand the
first pandemic of the twenty-first century—and the better we
understand it, the sooner we may hope to overcome it.
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