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Current approach to understanding
bacteriophage transcription strate-

gies during infection includes a combina-
tion of experimental and bioinformatics
approaches, which is often time and
resource consuming. Given the exponen-
tially growing number of sequenced bac-
teriophage genomes, it becomes sensible
asking to what extent one can understand
bacteriophage transcription by using bio-
informatics methods alone. We here
argue that a suitable choice of computa-
tional methods may provide a highly effi-
cient first-line approach for underst-
anding bacteriophage transcription.

Regulation of gene expression is in pro-
karyotes, to a large degree, exhibited
through the control of transcription initia-
tion, which heavily relies on the sequence-
specific recognition of promoter elements
by sigma factors from RNAP holoen-
zyme.1 Therefore, predicting promoters
with reliable precision and uncovering the
nature of interaction with a given sigma
factor is an essential first step in under-
standing the control of transcription initi-
ation. Moreover, for simple organisms,
like bacteriophages, the understanding of
gene expression regulation – i.e. transcrip-
tion strategy, can be straightforwardly
used for inferring their infection strategy.
This becomes especially important given
the potential utility of lytic bacterio-
phages, or their protein products, as
highly specific weapons for fighting the
growing number of bacterial pathogens
resistant to antibiotics.2

Promoter prediction in bacteria has
long been a classical bioinformatics
problem. Despite almost 3 decades of
committed work, the existing methods

for promoter prediction exhibit poor
accuracy, i.e., they typically lead to a
large number of false positives3 This
mainly applies to the prediction of
RpoD promoters, which are recognized
by the bacterial housekeeping sigma fac-
tors from Sigma 70 Group I. In addi-
tion to the bacterial housekeeping
promoters, bacteriophages also contain
promoters that are recognized by their
own sigma factors/RNA polymerases,
which further complicates the promoter
prediction in their genomes4,5 The
switching between sigma factors of dif-
ferent specificities allows transitioning
through subsequent bacteriophage infec-
tion stages. This is accompanied by
unequal temporal expression of distinct
gene classes – therefore, the elucidation
of temporal pattern of gene expression
can facilitate promoter prediction, and
vice versa, in an attempt to infer the
phage infection strategy.

Standard Approach to Inferring
Phage Infection Strategies

The standard approach to inferring
phage infection strategies employs com-
bined experimental and bioinformatics
approach. A typical example of such
approach is provided by the analysis of the
transcription strategy of a lytic coliphage
phiEco32 6 Specifically, macroarray meas-
urements of gene expression levels allowed
clustering phiEco32 genes according to
the temporal pattern of their expression,
i.e. to early, middle and late genes. Since
the transition between different temporal
classes is accompanied by redirection of
transcription machinery to promoters of
different specificity, gene clustering by
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maccroarrays provided the information in
which intergenic regions one should be
looking for promoters of phage-encoded
sigma factors – the promoters were subse-
quently revealed through primer extension
analysis. The phage-specific promoters
were first searched by bioinformatic
means, but the unknown specificity com-
bined with other unique features of phage
promoters, which will be assessed further
in the text, resulted in the failure of the
applied unsupervised search; note that
the unsupervised search had to be used, as
the specificity of the phage-specific pro-
moters was not known in advance. On the
other hand, promoters of host sigma fac-
tors (bacterial RpoD) were predicted
through bioinformatics procedure, though
the search was now supervised – i.e., it
used weight matrices based on alignments
of experimentally confirmed RpoD pro-
moters. Altogether, a combination of mac-
roarray temporal gene clustering with
biochemical and bioinformatics promoter
prediction allowed defining different
stages during phiEco32 gene expression,
i.e. inferring the underlying infection
process.

While this approach provides a wealth
of information on bacteriophage tran-
scription strategy, it is demanding both in
time and resources. Accordingly, having
in mind the availability of sequencing,
and the resulting exponentially growing
pace of bacteriophage genomes being
sequenced, it becomes sensible to ask if
there is a more efficient, less expensive,
approach to analyzing phage genomes.
This question raises even more interest
from the perspective of significance and
potential applications of phages in medi-
cine and biotechnology, and the increas-
ing number of incoming new isolates 7

Therefore, the ultimate goal of a prompt
and efficient analysis of newly-sequenced
genomes would be providing rapid
assumptions on lifestyles and potential
usefulness of novel phages, by shedding
light on their transcription strategies. Pro-
vided the availability of a growing number
of bioinformatics resources for analyzing
biological data, the aim of this commen-
tary is clarifying the extent to which one
can understand bacteriophage transcrip-
tion by using bioinformatics methods
alone.

Bioinformatics Approach to
Analyzing Newly-Sequenced

Phage Genomes

The starting step in analyzing phage
genomes, and inferring the underlying
infection strategy (Fig. 1), is gene predic-
tion and annotation, which is a straight-
forward part of the analysis. The genes
can be predicted by using some of the
gene prediction algorithms, e.g. Gene-
Mark 8 that reaches almost 99% accuracy
when predicting ORFs. The predicted
genes are usually annotated by looking for
homologues in databases through BLAST.
The gene prediction provides an overview
of phage genome organization – i.e., infer-
ring gene clusters in terms of their tran-
scription orientation and presence of long
intergenic regions; these long intergenic
regions usually contain the most impor-
tant cis-acting regulators of phage tran-
scription – promoters and terminators.
Further, the gene annotation reveals
the functions of proteins that a given bac-
teriophage codes for, though only to a
certain point, having in mind the extent
of the phage genome mosaicism 9 How-
ever, in addition to already established
genome organization, the gene annotation
sometimes provides enough information
for establishing the homology to some
other, more thoroughly studied phage

representative – this being of special
importance for providing first clues on the
regulatory pattern of transcription for a
given phage. Finally, note that predicting
phage infection strategies is reasonably
robust to potential inconsistencies in the
annotation of individual phage genes, as
the process is based on inferring the gene
classes (e.g., structural genes) that are tran-
scribed in the same direction/cluster, for
which annotations of a larger number of
genes are used.

Detecting bacterial promoters in
phage genomes

The promoter prediction comes as the
next (and more complicated) part of the
analysis, which includes both the phage-
specific and host-bacterial promoter detec-
tion in the phage genome, as stated above.
Even though bioinformatics predictions of
RpoD promoters in bacterial genomes
typically lead to many false-positives, this
does not appear as a major obstacle in bac-
teriophage genomes; in a first place – since
there is a notably less sequence quantity to
be analyzed – typical total size of phage
non-coding regions is of the order of 104

bp. More precisely, the total length of the
intergenic regions in 7–11 phage genome,
which has recently been analyzed entirely
through bioinformatics methods, is »13
000 bp 10 Secondly, bacterial promoters

Figure 1. Flow-chart of the underlying steps in the bioinformatics analysis of phage genomes. For
promoter prediction, which is the most challenging part of the analysis, the bioinformatic methods
that can be employed are specified (rectangle boxes in the upper left part of the figure). Note that
MLSA stands for Multiple Local Sequence Alignment, while PSWM stands for Position Specific
Weight Matrix – these bioinformatic methods will be further discussed in the text.
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in phage genomes are typically strong due
to the need for elevated production of
phage proteins in the host cell – this fur-
ther simplifies the RpoD promoter
detection.

As an illustration, we will now focus on
the host promoter prediction in the phage
7–11 genome, which infects Salmonella
enterica and has not been experimentally
examined. The use of a PSWM (position
specific weight matrix) approach – equiva-
lent to the one in a coliphage phiEco32
analysis - led to discovery of RpoD pro-
moters in the 7–11 genome, all localized
on the reverse strand, where they govern
the transcription of “-” orientated genes.
Note that the predictions based on the
weight matrices, in distinction to those
based simply on the similarity to the con-
sensus sequence, take into account that
different positions within the binding
motif, as well as different bases at a given
position, can have different contributions
to the binding affinity.

The majority of the detected promoter
elements in 7–11 genome were found
right upstream of the “-” gene cluster,
with 2 additional copies – with weaker
weight matrix scores – found within the
cluster. This finding is in a good agree-
ment with the conventional view of bacte-
riophage transcription, which assumes
sharp grouping of phage genes into diver-
gently transcribed clusters (one located on
the reverse, and the other on the forward
strand). Accordingly, promoters of differ-
ent specificities – the phage-specific and
bacterial RpoD, which govern the tran-
scription of the opposite gene clusters, are
also segregated to different strands – each
promoter class right upstream of its
respective cluster. In addition, a subset of
phage-specific promoters can also be
found on the same strand as the RpoD
promoters, but these are localized in the
downstream part of the respective RpoD
cluster, where they are implicated in the
transcription machinery takeover and
expression of the phage middle genes.

Detecting phage-specific promoters in
phage genomes

As opposed to the host promoter detec-
tion in the phage genomes, detection of
the promoters recognized by the phage-
encoded sigma factors/RNA polymerases

is generally more complicated. The proce-
dure corresponds to an unsupervised
search of phage intergenic regions since,
in the vast majority of cases, specificities
of phage sigma factors/RNA polymerases
are not known in advance. A whole set of
specialized bioinformatics methods – mul-
tiple local sequence alignment algorithms
(MLSA) were developed for the unsuper-
vised search of regulatory elements, major-
ity of which is based on the Gibbs search
(BioProspector, Gibbs Motif Sampler)
and EM – expectation maximization
approach (MEME)11-14.

EM methods are rigorous, determin-
istic algorithms which employ extensive
process of integration in search for the
most optimal solution. What may seem as
a major advantage, can in fact become a
serious shortcoming, since in parallel with
the increase in the problem dimensionality
(e.g., number of analyzed sequences) there
is also a significant increase in the time
needed to solve the problem – the
employed integration may grow exponen-
tially with the problem dimension. Hence,
the method becomes computationally
rather expansive which further imposes
the limitation of successfully analyzing
only a restricted set of sequences. Also,
governed by the goal of finding the most
optimal solution, EM methods suffer
from the problem of getting trapped in
the local maxima, when exploirng the
probability landscape during integration.
On the other hand, Gibbs search is a heu-
ristic procedure, which increases the speed
at the expense of sensitivity when detect-
ing degenerated regulatory motifs. In
addition to the increase in the search
speed, which is a major advantage from
the aspect of practical applications in bio-
informatics, stochastic sampling brings
another advantage over deterministic pro-
cedures – evading the problem of getting
trapped in some of the local maxima.
However, due to the stochastic nature of
the sampling, the Gibbs-based algorithms
often report suboptimal results which may
differ between multiple runs of the algo-
rithm on the same dataset. Also, as deter-
mining statistical significance of the
obtained results is still an open problem,
it is often needed to employ different
implementations of the same basic algo-
rithm (e.g., Gibbs Motif Sampler,

BioProspector) to verifiy the reported
motifs. Even though the underlying
approach is different – whereby Gibbs
algorithms represent stochastic, while EM
methods deterministic sampling, these
methods share the same, significant short-
coming – similar motifs, which randomly
appear in the analyzed sequences, can
mask the regulatory elements one is aimed
identifying.

When analyzing bacteriophages, this
shortcoming becomes even more obstruct-
ing, since phage-specific promoters are
found in low copy numbers across the
genome, which however often have pro-
nounced strength. In a support of
this notion, we return to the analysis of
phages phiEco32 and 7–11,10 where the
authors indeed showed that the phage-spe-
cific promoters could not be detected
through the standard bioinformatics
methods (MLSA algorithms), when rely-
ing on the information provided solely by
the sequence of the analyzed intergenic
regions. More precisely, different imple-
mentations of the same basic algorithm
(BioProspector and Gibbs Motif Sampler)
instead of converging toward the same
motif, report evidently unrelated sequence
elements.

The established difficulty was so far
addressed by relying on the experimental
data (measurement of gene expression lev-
els during infection), as provided by the
example of phiEco32 genome analysis.
The analogous approach was also used for
analyzing the Xp10 phage, which infects a
rice pathogen Xanthomonas oryzae and
encodes its own RNA polymerase15 The
simple method that enables clustering
phage genes into different temporal
expression classes can also be used to facil-
itate bioinformatics phage-specific pro-
moter detection, since it reduces the
search to a specified subset of intergenic
regions, and, therefore, minimizes the
chance for promoter masking by ran-
domly appearing sets of motifs. More pre-
cisely, when the information on which
groups of genes are transcribed in a certain
stage of the infection (early, middle or
late) is available, one can single out the
intergenic regions located upstream of
these genes as the ones expected to contain
a certain class of promoter elements, and
analyze them through bioinformatics
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methods. Due to the requirement for
experimental data, this is no more than a
halfway solution, so we will below discuss
an alternative approach for direct bioin-
formatics prediction of phage-specific
promoters.

Prediction of phage-specific promoters
is also an interesting question from the
bioinformatics aspect, since the problem
corresponds to detecting several short
motifs in a relatively long DNA sequence,
which was addressed in10 for phages 7–11,
phiEco32 and Xp10. Failure of the MLSA
algorithms in phage-specific promoter
detection was partially accounted for in
the text above. Moreover, the main reason
for the occurrence of promoter masking
by randomly repeating motifs, is that
MLSA algorithms assume presence of
searched motifs in a majority of the ana-
lyzed sequences, which is contrary to the
rather small number of phage promoters
as compared to the total number of the
intergenic regions. By taking into account
typically small variability of the sequences
of the phage specific promoters, the
authors of the previously mentioned study
resorted to a simplified procedure that is
based on a pair-wise alignment of phage
intergenic regions - which can be imple-
mented through e.g. BLAST, so that the
method is readily available and well-
known to a wide community of research-
ers16 As a matter of caution, we should
indicate that the specified pair-wise align-
ment can only detect promoters with a
suficiently low level of the sequence vari-
ability, which, fortunately, is a widely
shared feature of the phage-specific pro-
moters. The study demonstrates that this
pair-wise alignment procedure can detect
the phage-specific promoters in all of the
genomes analyzed. Results obtained for
phiEco32 and Xp10 were verified through
the comparison with their experimentally
confirmed phage-specific promoters,
whereby the 7–11 predictions were veri-
fied through the established homology
with phiEco32 phage.

Predicting phage transcription
strategy from the phage genome analysis

Predictions of the host and phage-spe-
cific promoters, present the main obstacle
in defining the transcriptional units
in bacteriophages, as the terminator

predictions are much more straightfor-
ward – i.e. are based on detecting the
stem-loop followed by poly-U tail17 Con-
sequently, the detected transcription sig-
nals - together with the information on
gene homology - enables inferring plausi-
ble predictions on bacteriophage infection
strategy, as demonstrated in the case of 7–
11,10 and also visually represented in the
form of a transcriptional map provided by
Figure 3 in reference 10. The analysis
indicates that this phage, upon entering
the bacterial cell, directs the host tran-
scription machinery to its early promoters,
localized upstream of the “-” gene cluster,
from which the transcription of the early
genes is initiated. For transcription regula-
tion, the antisigma factor gene is the most
important early gene, whose protein prod-
uct disables bacterial RpoD sigma factor,
and, therefore, enables core RNAP to
form a complex with the phage-encoded
sigma factor and initiate transcription of
the phage middle genes from the phage-
specific promoters. The annotation infers
that the middle genes code for proteins,
which are mainly involved in genome rep-
lication and therefore serve to ensure the
production of a sufficient number of
phage genome copies for upcoming viral
progeny. As a last stage during infection,
phage-specific late promoters, localized on
the C strand, become predominantly
active, most probably due to their longer
motif that enables sufficient strength, and
therefore, expression of structural genes
for capsid formation and lysis of the bacte-
rial cell. Herewith, all the conditions for
releasing new phages to enter novel infec-
tions cycles are fulfilled; at the same time,
putative expression patterns of all the key
players involved in obstructing bacterial
transcription and cell integrity are
inferred. Among these, phage-encoded
sigma and antisigma factors, along with
RNA-polymerases, merit most of the
attention.

Outlook

The bioinformatics methods that we
discussed above enable efficiently and sys-
tematically inferring the specificities for a
variety of phage-encoded sigma factors
and RNA polymerases. One such example

is provided by the sigma factors encoded
by phiEco32 and 7–11 genomes that
belong to ECF subfamily10,18 This sub-
family of sigma factors is very diverse and
most abundant among alternative sigma
factors, but poorly studied19 All the infor-
mation available so far on the mechanism
of promoter recognition comes from a few
well examined bacterial representatives
and new data are strongly influenced by
the existing ones, which could eventually
result in establishing incorrect/incomplete
paradigms. To that end, bacteriophage
ECF sigma factors, as outliers within this
subfamily, could serve as suitable models
for acquiring novel, self-contained data
and shed light on previous discoveries,
this being further encouraged by the easi-
ness of bioinformatics phage analysis, due
to a noteworthy simplicity of their
genomes.

This presents only one example of how
studying the regulation of bacteriophage
gene expression can surpass the initial
goals, which are mainly oriented toward
efficiently inferring transcription strategies
for a growing number of sequenced phage
genomes, and provide for a successful
crossover toward new, fundamental dis-
coveries. Many others are known from the
long-standing history of molecular biol-
ogy, since the vast majority of fundamen-
tal paradigms on the genome structure
and function were established through the
research on bacteriophages as model sys-
tems20,21 We can, therefore, safely con-
clude that by combining the simplicity
and peculiarity of phages as model organ-
isms with the high efficiency of bioinfor-
matics analyses, one can provide a
plausible approach for quickly acquiring
new insights, which could easily provide
guidelines for applications in medicine
and biotechnology or lead to establishing
novel paradigms on fundamental pro-
cesses in molecular biology.

To facilitate discovery of such novel
paradigms, and to make the correspond-
ing bioinformatic analysis available to a
wide range of researchers, it would be
quite useful to develop appropriate bioin-
formatic work-flows and pipilines that
would authomate analysis of the newly
sequenced phages. In fact, as we discussed
here, the most challenging part of the bio-
informatics analysis is transcription start
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site prediction, which is in general still an
open problem, where in bacterial genomes
a substantial number of false positives is
generally obtained. However, as argued in
the commentary, some of the methods
which generaly lead to a large number of
false positives in bacterial genomes (in
particular PSWM searches), are, in fact,
quite reliable in the case of bacteriophages
– this being a consequence of short phage
genome sizes and generally strong pro-
moter signals. On the other hand, some
of the well established methods for motif
finding (in particular MLSA algorithms),
are not well suited for bacteriophages,
but can be substituted by more simple,
yet robust, methods (in particular, pair-
wise alignment of the intergenic regions).
We therefore hope that this commentary
will motivate developing such work-flows
in a reasonably near future, with the
ingradient methods well suited for the
specifics of the bacteriophage genome
analysis.
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