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Abstract

A number of models in mathematical epidemiology have been developed to account
for control measures such as vaccination or quarantine. However, COVID-19 has brought
unprecedented social distancing measures, with a challenge on how to include these in
a manner that can explain the data but avoid overfitting in parameter inference. We
here develop a simple time-dependent model, where social distancing effects are intro-
duced analogous to coarse-grained models of gene expression control in systems
biology. We apply our approach to understand drastic differences in COVID-19 infection
and fatality counts, observed between Hubei (Wuhan) and other Mainland China prov-
inces. We find that these unintuitive data may be explained through an interplay of
differences in transmissibility, effective protection, and detection efficiencies between
Hubei and other provinces. More generally, our results demonstrate that regional dif-
ferences may drastically shape infection outbursts. The obtained results demonstrate
the applicability of our developed method to extract key infection parameters directly
from publically available data so that it can be globally applied to outbreaks of COVID-19
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in a number of countries. Overall, we show that applications of uncommon strategies,
such as methods and approaches from molecular systems biology research to mathe-
matical epidemiology, may significantly advance our understanding of COVID-19 and
other infectious diseases.

1. Introduction

As the novel COVID-19 disease caused by the SARS-CoV-2 virus

took the world by a storm, the new pandemic quickly gained priority in sci-

entific research in a wide range of biological and medical science disciplines.

Despite that their prior expertise was in unrelated research fields, many

researchers have successfully adapted their approaches andmethods to exam-

ine various aspects of this viral infection and, thus, contributed to finding the

necessary solutions. The systems biology community is not an exception

(Alon, Mino, & Yashiv, 2020; Bar-On, Flamholz, Phillips, & Milo, 2020;

Djordjevic, Djordjevic, Ilic, Stojku, & Salom, 2021; Eilersen & Sneppen,

2020; Karin et al., 2020; Saad-Roy et al., 2021; Vilar & Saiz, 2020;

Wong et al., 2020): those involved in modeling the dynamics of biological

systems at the molecular and cellular level can directly apply the similar

methodology in epidemiological studying of the virus spread—and this

exactly is the central point of the present paper. In particular, dynamic

models of biochemical reaction networks, in which the reaction kinetics fol-

low the law of mass action, are analogous to compartmental epidemiological

models which, instead of concentrations of chemical species, track the

prevalence of individuals in defined population classes over time (Voit,

Martens, & Omholt, 2015). Moreover, gene expression dynamics is usually

a result of the interplay between the changing rate of cell growth, on which

the global physiological rates of molecule synthesis and degradation depend,

and complex transcription regulation (Djordjevic, Rodic, & Graovac,

2019). Therefore, modeling dynamics of gene circuits implies combining

kinetic models, often relying on the law of mass action, with appropriate

non-linear functions describing the regulation part. In the case of the

COVID-19 epidemic, one can note that the virus transmission in a popu-

lation, driven by the biological capacity of the particular virus in the given

environment, is coupled with strong, time-dependent regulation, represen-

ted by the epidemic mitigation measures imposed by governments. These

similarities between the modeled systems may facilitate the application of
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the systems biology techniques to the epidemiology field of research. In this

paper, we will show how such an approach can be used to assess the basic

parameters of the COVID-19 epidemic progression in a given population.

In particular, we will use the analogy outlined above to study the

COVID-19 spread inMainland China and test the hypothesis about possible

reasons for the uneven disease spread in China provinces.

Our interest inMainland China infection progression comes from Fig. 1.

The progression seems highly intriguing, as Hubei (with only 4% of China

population) shows an order of magnitude larger number of detected infec-

tion cases (Fig. 1A) and two orders of magnitude higher fatalities (Fig. 1B)

compared to the total sum in all other Mainland China provinces. The epi-

demic was unfolding well before the Wuhan closure (with the reported

symptom onset of the first patient on December 1, 2019) and within the

period of huge population movement, which started 2 weeks before

January 25 (the Chinese Lunar New Year) (Chen, Yang, Yang, Wang, &

B€arnighausen, 2020). As a rough baseline, a modeling study of the infection

spread from Wuhan (Wu, Leung, & Leung, 2020) estimated more than

105 new cases per day in Chongqing alone—instead, the actual (reported)

peak number for allMainland China provinces outside Hubei was just 831.

Fig. 1 Infection and fatality counts for Hubei vs all other provinces. The number of
(A) detected infections, (B) fatality cases. Zero on the horizontal axis corresponds to
the time from which the data (Hu et al., 2020) are taken (January 23), which also coin-
cides with the Wuhan closure. Red circles correspond to the observed Hubei counts.
Blue squares correspond to the sum of the number of counts for all other provinces.
The figure illustrates a puzzling difference in the number of counts between Hubei
alone and the sum of all other Mainland China provinces.
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Consequently, it is a notable challenge for computational modeling to

understand drastic differences in COVID-19 infection and fatality counts

observed between Hubei (Wuhan) and other Mainland China provinces.

These drastic differences may be a consequence of an interplay between

the virus transmissibility (influenced by environmental and demographic

factors) and the effectiveness of the protection measures. Both can signifi-

cantly change between different provinces (more generally different coun-

tries/regions), and the model has to infer this from available data (commonly

the number of confirmed cases, publicly available for a large number of

countries/regions).

The study presented here will therefore demonstrate the usefulness of the

systems biology approach to the analysis of non-trivial COVID-19 data from

China. In particular, the developed method will allow us to analyze the puz-

zling differences in dynamics trajectories in Mainland China provinces, and

it will also turn out to be more generally applicable for understanding

regional differences in outburst dynamics. The surprising differences in

COVID-19 progression in different provinces may put strong constraints

on the underlying infection progression parameters and allow us to

understand:

i. What interplay between the inherent disease transmissibility and the

effects of social distancing is responsible for the large difference in the

count numbers between Hubei and the rest of Mainland China?

Addressing this question in a proper way would make easier to compre-

hend how regional differences may shape the infection outbursts, which

is important both locally (for explaining this puzzle), and more generally

in the context of global COVID-19 pandemics progression.

ii. What is the Infected Fatality Rate (IFR, the number of fatalities per total

number of infected cases) in China? Case Fatality Rate (CFR, the number

of fatalities per confirmed/detected cases) can be obtained directly from the

data but is highly sensitive to the testing coverage. IFR is a more fun-

damental mortality parameter, as it does not depend on the testing cov-

erage, but is however much harder to determine, due to the unknown

number of infected cases.

Addressing these questions allows understanding both the different response

policies, and the inherent risks posed by the pandemics and will enable future

cross-country comparisons. The developed methodology (i) demonstrates

the usefulness of applying transdisciplinary expertise to efficiently analyze

problems of nationwide importance, (ii) allows to readily analyze future
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outbreaks of COVID-19 and other infectious diseases, as it depends only on

inference from straightforward and publically available data.

2. An overview of compartmental models of epidemic
progression

In epidemiology, for practical and ethical reasons, it is fairly impossible

to conduct scientific experiments in controlled conditions in order to inves-

tigate the spread of the disease in the human population (Brauer, 2008).

Therefore, epidemiologists usually resort to collecting data from clinical

reports on the observed situation in the field and, then, using mathematical

models to interpret these data, i.e., to infer the principles underlying the pro-

cess of disease spreading. These principles may point to potentially successful

control strategies, as well as to the probable future status of the disease in the

population. Epidemiological data can often be incomplete or inaccurate due

to poorly controlled or non-standardized collection methods, which signif-

icantly complicates modeling. However, even a qualitative agreement of the

model with the data can provide useful information of great practical impor-

tance. Hence, model predictions are widely used for making various esti-

mates and answering important questions about the seriousness of the

epidemic consequences. For example, how many people will be infected,

require treatment, or die, or how many patients should the public health

facilities expect at any given time? Also, how long will the epidemic last?

Towhat extent could quarantine and self-isolation of the infected contribute

to mitigating the effects of the epidemic?Model predictions guide the devel-

opment of strategies to control the epidemic spread, including vaccination

programs.

When the goal is to discover the general principles of epidemic progres-

sion, simple mathematical models, which can be solved and analyzed with a

“pencil on paper,” are a logical choice as they give insight into the properties

of the examined process despite failing to reproduce it in detail. In 1927,

Kermack and McKendrick formulated a simple model that predicted

behavior similar to that observed in numerous epidemics (Kermack &

McKendrick, 1927). It was a type of compartmental model describing the

infection spread in a population by analogy with a system of vessels con-

nected by pipes through which a fluid flows. Namely, the population is

divided into compartments, and assumptions are made about the nature

and the rate of the flow between them. The structure of the compartmental
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model—which sections and howmany of them it will contain and how they

will be connected—depends on the characteristics of transmission of a given

infectious disease and whether the past disease provides immunity to

re-infections or not. The model set by these two scientists is known as

SIR (from Susceptible–Infected–Recovered). It divides the population into

three classes which correspond to compartments (Fig. 2): Susceptible (S)

class includes healthy individuals susceptible to infection, which have never

been exposed to the virus; Those who are infected and can infect others

belong to the Infected (I) class; Recovered (R) class encompasses those

who are excluded from the population, either by quarantining the infected,

or by acquiring immunity through recovery from disease or immunization,

or by the death of the infected (Brauer, 2008).

Mathematically, this model is represented by a system of ordinary differ-

ential equations. The time derivative of the number of individuals in a

compartment, i.e., the rate of their change, is given by the difference between

the rates at which the compartment is filled and emptied. Analogous to the

processes in which chemical species (e.g., proteins) are degraded or converted

into others within a biochemical reaction network (Ingalls, 2013), the rate of

transition of individuals from one compartment to another follows the law of

mass action. For example, a person moves from compartment S to compart-

ment I at the rate which is proportional to the product of the S and I, as the

encounterwith an infected person enables virus transmission to the susceptible

one (Voit et al., 2015).

By formulating such (or similar) models, one assumes that the epidemic is

a deterministic process. Namely, the state of the population at all times is

completely determined by its previous state and the rules described by the

model. This is a reasonable approximation in cases where the numbers of

individuals in the compartments are large, i.e., in a commonly considered

Fig. 2 Schematic representation of the SIR model. Rectangles denote model compart-
ments containing susceptible (S), infected (I), and recovered (R) individuals in the pop-
ulation of size N. Permitted directions of flow between compartments are denoted by
arrows, with the rates of flow indicated above them. The rates are expressed according
to the law of mass action, where κ1 and κ2 are the rate constants. The dashed curve
corresponds to bimolecular reaction, where newly infected are generated through
interactions (contacts) between susceptible and already infected individuals.
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deterministic range (>10). Such approximation (i.e., deterministic model-

ing) is well suited for the spread of COVID-19, which is up to now known

for a large number of individuals in all compartments.

3. Systems biology approach to compartmental
modeling of the COVID-19 epidemic

The above-introduced SIR model is likely the simplest compartmen-

tal model in mathematical epidemiology and many subsequent models are

derivatives of this basic form. Among others, these extensions have also been

developed toward including control measures such as vaccination or quar-

antine (Diekmann, Heesterbeek, & Britton, 2012; Keeling &Rohani, 2011;

Martcheva, 2015). However, COVID-19 brought a challenge to account

for previously unprecedented social distancing measures, taken by most

countries. When included, these effects have been, up to now, accounted

for by the direct changes in the transmissibility term (Chowell, Sattenspiel,

Bansal, & Viboud, 2016; Tian et al., 2020), which, however, corresponds

to introducing a phenomenological dependence in otherwise mechanistic

models. That is, to be included consistently in the model, social distancing

should move individuals from one compartment to the other, just as vaccina-

tion and quarantine are usually implemented. On the other hand, it is neces-

sary to construct aminimal mechanistic model in terms of the ability to explain

the data with the smallest number of parameters, so that relevant infection pro-

gression properties can be inferredwithout overfitting.With this goal inmind,

we used our systems biology background to develop a minimal model that

accounts for all the main qualitative features of the SARS-CoV-2 infection

spread under epidemic mitigation measures. As outlined above, we opt for

a deterministic model due to the robust and computationally less demanding

parameter inference (Wilkinson, 2018).

To describe the COVID-19 epidemic, we developed SPEIRD model

depicted schematically in Fig. 3. It assumes that healthy persons susceptible

to infection (S), can be infected, but in the case of this (and many other)

viruses they do not immediately become contagious to other people, but

first spend some time in the compartment E (Exposed to the virus) and then

develop symptoms and pass to the compartment I. Infected persons can

either recover at home, moving to the compartment R, or they can be diag-

nosed with SARS-CoV-2 virus infection (Active detected cases).A (Active)

cases can, further, either become healed (H) or die from the disease (F ). To

consistently implement the social distancing within this model structure, we
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included a compartment P (Protected) in the model, which contains suscep-

tible persons who are protected from exposure to the virus as a result of the

epidemic mitigation measures, such as self-imposed isolation, social distanc-

ing, and advised changes in individual behavior.

The following differential equations describe how different categories

change with time:

dS=dt ¼ �β � I � S=N � α tð Þ � S (1)

dE=dt ¼ β � I � S=N � σ � E (2)

dI=dt ¼ σ � E � γ � I � ε � δ � I (3)

dA=dt ¼ ε � δ � I � h � A� m � A (4)

dH=dt ¼ h � A (5)

dF=dt ¼ m � A (6)

where β is the infection rate in a fully susceptible population; α(t), the
time-dependent protection rate, i.e., the rate at which the population moves

from susceptible to the protected category, quantifying the impact of the

social protection measures; σ, the inverse of the exposed period; γ, the
inverse of the infectious period; δ, the inverse of the period of the infection
diagnosis; ε, the detection efficiency; h, the healing rate of diagnosed cases;

m, the mortality rate.

Fig. 3 Schematic representation of the SPEIRDmodel. Compartments and the transition
rates are as indicated in the text, where transitions between different compartments are
marked by arrows. The time-dependent transition rate from susceptible to protected
category α(t) is indicated by the solid arrow. The infected can transition to the recovered
category either without being diagnosed (transition to R), or being diagnosed and then
transitioning to confirmed healed or fatality cases. The dashed rectangle indicates that
A, H, and F categories in the starting model are substituted for the cumulative case
counts (D), which removes h and m from the analysis, where D is fitted to the
observed data.
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The probability that an infected person will meet a susceptible person is

proportional to S/N, whereN is the total number of individuals in the pop-

ulation. The rate at which individuals move from S to E is obtained when

the product of I and S/N is multiplied by the infection rate, β, which quan-
tifies the efficiency of transmission of a particular virus in the population

with certain demographic characteristics and meteorological conditions,

and it does not depend on epidemic suppression measures. Thus, β is a char-
acteristic of the virus, the population, and the external conditions in which

the virus is transmitted. Since the compartment S is being emptied, the

corresponding rate in the first equation is specified with the minus sign.

S also decays by moving the individuals to P with a protection rate that

may vary with time. While mitigation measures are commonly accounted

for bymodels with time-independent terms (Martcheva, 2015), we note that

the social distancing term should depend on time, as this measure is intro-

duced at a certain point in epidemics and may also evolve gradually. We

denote the time point (more specifically, the date) of the onset of the social

distancing measures in the examined population with t0. The protection rate

α(t) is then taken as 0 before t0 and a constant value α afterwards.

One may notice a direct parallel between the model outlined above, and

e.g., modeling gene expression regulation in systems biology with a step

function that approximates the activity of a promoter to which repressor

proteins are highly cooperatively bound: the promoter is initially silenced

and upon receiving a signal which leads to the abrupt removal of repression,

promoter activity rises sharply to its maximum value. We notice that

the step function is a satisfactory approximation of the dynamics of social

distancing, i.e., it may not be necessary to further increase the number of

parameters by applying the Hill function (which describes a more gradual

activation), since governments quickly introduced these measures, together

with their effective implementation. Note however that in (Djordjevic

et al., 2021) we introduced a more complex model with Hill function,

and provided analytical results for key properties of this model.

Compartment E is filled by infecting the susceptibles and emptied by

moving the individuals to I, with the rate σ representing the inverse value

of the latent period during which the person is not contagious. While com-

partment I is filled with individuals from E, it is depleted through two chan-

nels. Individuals move toRwith the rate γ, which is the inverse of the period
of contagiousness, and to A with the rate δ, which is the inverse of the time

required for diagnosis, multiplied by ε, reflecting that only a fraction (likely

small due to many asymptomatic infections) of the total infected are
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detected. Note that case detection reduces the number of individuals in

I that can infect susceptibles: the model assumes that the detected cases

are quarantined and thus isolated from the general population. The numbers

in compartments A,H, and F change following the same logic described for

the other compartments.

We can further simplify the analysis by looking at the total number of

detected cases (D), which is the sum of A, H, and F. By adding the

Eqs. (4)–(6), we obtain:

dD=dt ¼ ε � δ � I , (7)

and thus lose two parameters, h and m. The total number of detected cases in

time is a measurable quantity from which we can determine the dynamics of

other model compartments since this is the data that is available for various

different regions and countries. Thereby, we assume that before t0 social

distancing does not take effect, and the measures introduced at t0 will take

effect on D�10 days later, as this is about the time that elapses between

infection and detection/diagnosis (Feng et al., 2020). Consequently, for

the first t0+10 days, the D curve reflects disease transmission without

epidemic suppression measures.

3.1 Virus transmission in the early stages of epidemics
Wewill now focus on the dynamics of the infection spread at the very begin-

ning of the epidemic, i.e., on the period before the introduction and practice

of any control measures (Salom et al., 2021). Regarding the model, we

assume that there is no social distancing (no transition from S to P), there

is no quarantine, and almost the entire population consists of people suscep-

tible to infection, so S/N¼1. This gives us an even simpler mathematical

model which appears to be very useful because it allows analytical derivation

of the expressions we need. Our system of Eqs. (1)–(3) and (7) is reduced to
two linear differential equations that we can write in matrix form

d

dt

E

I

� �
¼ �σ β

σ �γ

� �
E

I

� �
¼ A

E

I

� �
, (8)

determine the eigenvalues and eigenvectors of the matrix and, subsequently,

the solutions of the system,E(t) and I(t). Specifically, the cumulative number

of infected in time, I(t), is obtained according to the following equation:

I tð Þ ¼ C1 exp λ+tð Þ + C2 exp λ�tð Þ, (9)
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where λs are eigenvalues of the matrix. Since one of the eigenvalues, here

denoted by λ�, is negative, the corresponding term of the Eq. (9) will

decrease over time, and I(t) will be effectively described by the first term,

already after few days from the epidemic outbreak (Salom et al., 2021).

We can further derive this equation for the dependence of the logarithm

of the number of detected cases in time:

log D tð Þð Þ ¼ log ε � δ � I 0ð Þ=λ+ð Þ + λ+ � t (10)

This is the straight line equation whose slope is given by the value of λ+ (the

dominant, positive eigenvalue of the matrix in Eq. (8)).

Once we know λ+, we can calculate the value of the so-called basic

reproduction number, R0,free, by fixing mean values of the latency period

and the infectivity period (γ¼0.4 days�1, σ¼0.2 days�1), which are known

from the literature and characterize the fundamental infection processes

(Kucharski et al., 2020; Li et al., 2020):

R0,free ¼ β
γ
¼ 1 +

λ+ γ + σð Þ + λ2+
γσ

(11)

R0,free is an important epidemiological parameter that characterizes the

inherent biological transmission of the virus in a completely unprotected

population. In particular, it is the mean number of secondarily infected

by one infected person introduced in a completely susceptible population.

It depends on the biology of the specific virus, as well as the demographic

characteristics of the population and the environmental conditions, while it

does not depend on the applied infection control measures (Brauer, 2008).

In Salom et al. (2021) we utilized a bioinformatics analysis, akin to those

often used to understand complex data in systems biology, to pinpoint

demographic and meteorological factors that affect R0,free (i.e., inherent

virus transmissibility in population). This furthermore underlines that a rich

array of techniques developed and/or widely used within systems biology

can be successfully employed within infectious disease modeling.

4. Parameter analysis and inference

R0,free, α, t0, two initial conditions (I0 and E0), and the detection effi-

ciency ε, are unknown andmay differ between the provinces. Is it possible to

determine these unknown parameters from different properties of the

D curve? Early in the infection, almost the entire population is susceptible

(S�N), so Eqs. (2) and (3) become linear, and decoupled from the rest of the
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system, as discussed in the previous section. This sets the ratio of I0 to E0,

through the eigenvector components with the dominant (positive) eigen-

value of the Jacobian for this subsystem. This eigenvalue, corresponding

to the initial slope of the log(D) curve, sets the value of λ+ and subsequently,

ofR0,free (see Eq. 11). From Eq. (7) one can see that the product of I0 and ε�δ
is set by dD/dt at the initial time (t¼0). Later dynamics of the D curve is

determined solely by the combination tα¼ t0+1/α (which we denote as

protection time), setting the time at which �½ of the population moves

to the protected category. We also numerically checked this, and confirmed

that t0 can be lowered at the expense of increasing 1/α, without affecting the
fit quality.We allowed for t0 to vary in reasonable proximity of January 23, as

the social distancing was generally introduced close to Wuhan closure (e.g.,

on that date, all major events in Beijing were canceled) (Chen et al., 2020;

Du et al., 2020), but we cannot be sure when the measures effectively took

place. Our inferred t0 values are within a week from Wuhan closure, appe-

aring as reasonable. The remaining independent parameter (I0) is then left to

be determined fromD curve properties at the late infection stage, such as its

saturation time. The number of characteristic dynamics features is thus at

least equal to the number of fit parameters, leading to constrained numerical

analysis, so that overfitting is not expected. For few provinces, we however

observed that I0 can be decreased compared to the best fit value, without

noticeably affecting the fit quality. For these provinces, we chose the lowest

I0 value that still leads to a comparably good fit. This allows obtaining the

most conservative (i.e., as high as possible while still consistent with data)

IFR estimate, as the reported fatality counts for provinces other than

Hubei is surprisingly low.

Parameter inference and uncertainties are estimated separately for each

province. However, within a given province, demographic, special, or pop-

ulation activity (network effects) heterogeneities (Britton, Ball, & Trapman,

2020; Diekmann et al., 2012), or seasonality effects (Wong et al., 2020), are

not taken into account. These are potentially important, particularly for pro-

jections (longer-term predictions of infection dynamics under different sce-

narios), and can be readily included in our model. Such extensions would

however complicate parameter inference, due to an increase in parameter

number, as this may either lead to overfitting or require special/additional

data that may be available only for a limited number of countries/regions

(which would limit the generality of our proposed method). A more

complex model structure may also obscure a straightforward relationship

between the model parameters and distinct dynamical features of the

12 Magdalena Djordjevic et al.
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confirmed case count curve analyzed above. While the inclusion of addi-

tional effects is left for future work, we here employ the model structure

and parameter inference introduced above on widely available case count

data, as proof of the principle for the generality of our proposed approach.

Moreover, a major advantage of our approach is that it allows consistent

analysis for all provinces with the same model, numerical procedure, and

parameter set, allowing an objective comparison of the obtained results.

Our model was numerically solved by the Runge-Kutta method

(Dormand & Prince, 1980) for each parameter combination. Parameter

values were inferred by exhaustive search over a wide parameter range, to

avoid reaching a local minimum of the objective function (R2). To infer

the unknown parameters, we fit (by minimizing R2) the model to the

observed total number of detected D for each province. As an alternative

to exhaustive search, some of many optimization techniques used in epi-

demics modeling, such as the Markov chain Monte Carlo (MCMC)

approach, can be used instead (Keeling & Rohani, 2011; Wong et al.,

2020)—exhaustive search is however straightforward, guarantees that the

global minimum is reached, and is in this case not computationally demand-

ing. Errors were estimated through Monte-Carlo simulations (Press,

Flannery, Teukolsky, & Vetterling, 1986), individually for each province

with the assumption that count numbers follow the Poisson distribution.

Monte-Carlo simulations were found as the most reliable estimate of the

fit parameter uncertainties for a non-linear fit (Cunningham, 1993). This

also serves as an independent check for overfitting, as in that case, data point

perturbations would lead to large parameter uncertainties. We find no indi-

cation of this in the results reported below, as the inferred uncertainties (con-

sistently indicated with all results) are reasonably small. In particular, the

differences in the inferred parameter values, which are relevant for the

reported results/conclusions, are statistically highly significant. P values

for extracted parameter differences between provinces are estimated by

the t-test.

5. Analysis of COVID-19 transmission in China

We used our SPEIRD model with the parameter inference described

above, to analyze all Mainland China provinces, except Tibet, where only

one COVID-19 case was reported. Parameters were estimated separately

for each of the 30 provinces by the same model and parameter set, which

enables an impartial comparison of the results presented below. To allow
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for a straightforward comparison of the infection progression between

different provinces, the starting date (i.e., t¼0) in our analysis is the same

for all the provinces and corresponds to January 23 (when the data for

all the provinces became publically available and continuously tracked

(Hu et al., 2020)).

In Fig. 4A and B, we show that our model can robustly explain the

observed D, in the cases of large outburst (Hubei on Fig. 4A), as well as

for all other provinces, where D is in the range from intermediate (e.g.,

Guangdong) to low (e.g., Inner Mongolia). Provinces in Fig. 2B were

selected to cover the entire range of observed D (from lower to higher

counts), while comparably good fits were obtained for other provinces,

which were all included in the further analysis. Our method is also robust

to data perturbations (which might be frequent), e.g., in the case of

Hubei (Wuhan), a large number of counts was added on February 12, based

on clinical diagnosis (CT scan) (Feng et al., 2020), which is apparent as a

discontinuity in observedD in Fig. 4A. Themodel however interpolates this

discontinuity, finding a reasonable description of the overall data.

We backpropagated the dynamics inferred for Hubei, to estimate that

January 5 (�4 days) was the onset of the infection’s exponential growth

in the population (not to be confused with the appearance of first infections,

which likely happened in December (Feng et al., 2020)). This agrees well

with (Feng et al., 2020) (cf. Fig. 3A), which tracked cases according to their

symptom onset (shifted for�12 days with respect to detection/diagnosis, cf.

Fig. 3B), and coincides with WHO reports on social media that there is a

cluster of pneumonia cases—with no deaths—in Wuhan (WHO, 2020).

Since our analysis does not directly use any information before January

23, this agreement provides confidence in our I0 estimate. Note that we infer

I0 separately for each province of interest, through which we also take into

account different times of the infection onset in different provinces (so that

earlier onset time would generally lead to a larger number of infected on

January 23).

Key parameters inferred from our analysis are summarized in Fig. 4C–F,
with individual results and errors for all the provinces shown in Table 1.

Fig. 4C shows the distribution of R0,free. Note that R0,free might depend

on demographic (population density, etc.) and climate factors (temperature,

humidity…), which are not controllable, but are unrelated to the applied

social distancing measures (see above). It is known that the R0 value can

strongly depend on the model, e.g., the number of introduced compart-

ments (Keeling & Rohani, 2011); accordingly, a wide range of R0 values
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Fig. 4 Model predictions: comparison with data and key parameter estimates. Predictions (compared to data) of detected infection counts for
(A) Hubei, (B) other Mainland China provinces. Zeros on the horizontal axis correspond to January 23, which is the initial time in our numerical
analysis for all the provinces. The observed counts are shown by dots and our model predictions by dashed curves. Names of the provinces
are indicated in the legend, with provinces selected to cover the full range of the observed total detected counts. The distribution with
respect to provinces of (C) the basic reproduction number in the absence of social distancing, R0,free, (D) the protection time tα. (E) Case
Fatality Rate, calculated directly from the reported data. (F) Infected Fatality Rate. The values for Hubei are indicated by the red bars.
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Table 1 Inferred COVID-19 infection progression parameters for Mainland China provinces
Province tα (days) R0 E0 I0 IFR (%) CFR (%) Detected (%)

Anhui 6.6�0.5 5.5�0.8 920�30 220�20 0.04�0.02 0.6�0.3 6�3

Beijing 7.9�0.5 3.5�0.4 610�20 180�10 0.12�0.05 1.7�0.7 7�3

Chongqing 7.0�0.2 3.5�0.2 1900�40 560�20 0.04�0.03 1.0�0.5 4�2

Fujian 3.7�0.4 7�2 1660�40 360�20 0.007�0.003 0.3�0.4 2�1

Gansu 5�1 6�3 630�20 150�10 0.03�0.04 1�1 2�3

Guangdong 5.0�0.1 7�1 1360�40 290�20 0.04�0.01 0.6�0.2 7�2

Guangxi 7�1 3.8�0.8 1000�30 290�20 0.02�0.02 0.8�0.6 3�3

Guizhou 8.1�0.6 7�1 53�7 11�3 0.06�0.03 1�1 4�2

Hainan 7.6�0.8 3.3�0.7 300�20 90�10 0.21�0.09 4�2 6�3

Hebei 6.0�0.6 7�2 240�20 52�7 0.11�0.03 1.8�0.8 6�2

Heilongjiang 7�1 6�2 260�20 59�7 0.15�0.07 2.9�0.9 5�3

Henan 7.0�0.3 4.5�0.5 1780�40 460�20 0.09�0.04 1.7�0.4 5�2

Hubei 8.3�0.2 8.2�0.4 31,900�400 6600�200 0.15�0.09 6.5�0.1 2�2

Hunan 5.1�0.1 6.8�0.8 1430�40 310�20 0.02�0.01 0.4�0.2 5�2

I. Mongolia 10.0�0.8 2.8�0.4 940�30 300�20 0.01�0.03 1�1 1�3

Jiangsu 5.5�0.5 7�2 500�20 110�10 0�0 0�0 6�2
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Jiangxi 7.0�0.2 5.6�0.9 890�30 210�10 0.005�0.002 0.1�0.1 5�2

Jilin 10.0�0.7 4.0�0.8 270�20 76�9 0.02�0.02 1�1 1�2

Liaoning 7�1 2.9�0.7 1240�40 390�20 0.02�0.04 2�2 1�2

Ningxia 5.3�0.9 7�3 72�9 15�4 0�0 0�0 6�23

Qinghai 6.1�0.6 4.0�0.5 2260�50 640�30 0�0 0�0 0�2

Shaanxi 5.2�0.5 6�1 380�20 90�10 0.07�0.03 1.3�0.8 6�2

Shandong 9�1 3.5�0.5 900�30 260�20 0.06�0.01 1.0�0.4 6�1

Shanghai 5.0�0.4 6�1 1570�40 370�20 0.02�0.02 0.8�0.5 2�3

Shanxi 5.2�0.5 6�2 1600�40 370�20 0�0 0�0 1�2

Sichuan 7.7�0.8 3.7�0.5 990�30 280�20 0.03�0.02 0.6�0.3 5�3

Tianjin 7�2 4�2 170�10 46�7 0.14�0.06 2�1 7�3

Xinjiang 7.3�0.9 6�1 42�7 10�3 0.25�0.09 3�2 8�2

Yunnan 4.0�0.2 7�2 360�20 76�9 0.06�0.03 1.2�0.9 5�2

Zhejiang 5.0�0.1 7.2�0.8 1340�40 290�20 0.005�0.002 0.1�0.1 7�3

tα, protection time;R0,free, basic reproduction number; E0, initial exposed; I0, initial infected; IFR, Infected Fatality Rate;CFR, Case Fatality Rate; detected %, fraction of
the infected population that has been detected. Error of the quantities correspond to one standard deviation.
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were reported for China in the literature (Sanche et al., 2020; Wu, Leung,

Bushman, et al., 2020). Consequently, a clear advantage of our study is that

parameters for all China provinces were determined from the same model

and data set, which allows direct comparisons. Our obtained average R0,free

for provinces outside of Hubei is 5.3�0.3, in a reasonable agreement with a

recent estimate (�5.7) (Sanche et al., 2020). Furthermore, we observe that

R
0,free

for Hubei is a far outlier with a value of 8.2�0.4, which is notably

larger than for other provinces with p�10�11. This then strongly suggests

that demographic and climate factors that determineR0,free, played a decisive

role in a large outburst in Hubei vs other provinces, which we further

address below.

The distribution of protection time tα for the provinces is shown in

Fig. 4D, with the value for Hubei indicated in red. The mean for the other

provinces is 6.6�0.2 days. That is, we observe that the suppressionmeasures

were efficiently implemented, with �½ of the population moving to the

protected category within a week fromWuhan closure. The protection time

for Hubei of 8.3�0.2 days was longer, which is statistically significant at the

p�10�11 level. The estimated less efficient protection in the case of Hubei

may also be an important contributing factor in the surprising difference in

Hubei vs other provinces, which we further investigate below.

CFR distribution, based on the fatality numbers reported for Hubei and

other provinces is shown in Fig. 4E. These numbers are not based on the

model predictions, i.e., can be straightforwardly obtained by dividing the

total number of fatalities by the total number of detected cases. CFR for

other provinces with a mean of 1.2�0.4% is significantly smaller compared

to CFR for Hubei, which was 4.6% before the correction on April 17, and

6.5% after the correction (with 1290 fatalities added to Wuhan). This large

difference in CFR between Hubei and other provinces further accentuates

the differences noted in Fig. 1.

IFR is harder to determine than CFR, as a majority of COVID-19 infec-

tions correspond to asymptomatic or mild cases that are by large not diag-

nosed (Day, 2020). We consequently calculate IFR as the total number of

fatalities divided by the total number of infections (cumulative incidence) for

the entire outburst, where cumulative incidence is estimated from our

model. As the infections precede fatalities, both the total number of fatalities

and the cumulative incidence in our estimate correspond to the entire out-

burst, so that all the infections had a sufficient time to recover or lead to

fatalities—this is directly feasible for the provinces in China, where all

detected case counts reached saturation. Note that IFR calculated in this
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way corresponds to an averaged quantity so that it does not capture possible

time-dependent change over the outburst interval (in fact, for Wuhan it

is known that the fatality rate was larger at the very beginning of the out-

burst). Nevertheless, the estimated IFR’s present a reasonable measure of

COVID-19 mortality across China provinces.

IFR distribution, which provides a much less biased measure of the

infection mortality, is shown in Fig. 4F. In distinction to CFR, estimated

IFR shows a much smaller difference between Hubei (0.15�0.09%) and

other provinces (0.056�0.007%). Therefore, while Hubei is a clear outlier

with respect to CFR, we observe similar IFR values for all Mainland China

provinces, where few provinces have even higher IFR than Hubei. The

ratio of IFR to CFR equals the fraction of all infected that got detected

(detection coverage). We estimate that the mean detection coverage for all

provinces except Hubei is higher than detection coverage for Hubei

(4.5�0.9% vs 2�2%). This difference is responsible for a decrease by a

factor of two fromCFR to IFR for Hubei, compared to the other provinces,

and consequently for more uniform mortality estimates at the IFR level.

Xinjiang has the highest IFR of 0.25�0.09% so that Hubei is not an outlier

anymore. Estimated IFR’s of up to 0.3% in China provinces are in general

agreement with the estimates reported elsewhere (see e.g., (Bar-On et al.,

2020; Djordjevic et al., 2021; Mizumoto, Kagaya, & Chowell, 2020)).

In Fig. 5A, two key infection progression parameters are plotted against

each other: protection time tα vs basic reproduction number R0,free.

Unexpectedly, there is a high negative correlation, with Pearson correlation

coefficient R¼� 0.70, which is statistically highly significant p�10�5,

where these two are a priori unrelated (see above). Actually, stronger social

distancing measures—which by definition are not included in R0,free—

would lead to a decrease in effective transmissibility. This would then lead

to a tendency of transmissibility to positively correlate with tα, oppositely

from the strong negative correlation observed in Fig. 5A. Therefore, higher

basic reproduction number is genuinely related to a shorter protection time

(larger effect of the suppression measures). Intuitively, this could be under-

stood as a negative feedback loop, commonly observed in systems biology

(Alon, 2019; Phillips, Kondev, Theriot, & Garcia, 2012), where larger

R0,free leads to steeper initial growth in the infected numbers, which may

elicit stronger measures and better observing of these measures by the pop-

ulation faced with a more serious outbreak. Interestingly, similar negative

feedback was also obtained in the context of epidemics research other than

COVID-19 (Wang, Andrews, Wu, Wang, & Bauch, 2015).
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The twomain properties of the Hubei outburst are therefore higherR0,

free and tα compared to other provinces. In Fig. 5B, we investigate how

these two properties separately affect the Wuhan outburst for latent and

infected cases, where unperturbed Hubei dynamics is shown by the red full

curve.We first reduce onlyR0,free from the Hubei value, to the mean value

for all other provinces (the dash-dotted green curve). We see that this

reduction substantially lowers the peak of the curve, though it still remains

wide. Next, instead of decreasing R0,free, we decrease the protection time

tα to the mean value for all other provinces (dashed orange curve). While

reducing tα also significantly lowers the peak of the curve, its main effect is

in narrowing the curve, i.e., reducing the outburst time. Finally, when R0,

free and tα are jointly reduced, we obtain the (dotted purple) curve that is

both significantly lower and narrower than the original Hubei progression.

This curve comes quite close to the curve that presents the sum of all other

provinces (full blue curve)—the dotted curve remains somewhat above

this sum, mainly because the initial number of latent and infected cases

is somewhat higher for Hubei compared to the sum of all other provinces.

This synergy between the transmissibility and the control measures will be

further discussed below.

Fig. 5 The interplay of transmissibility and effective social distancing. (A) The correlation
plot of tα vs R0,free for all provinces, where the point corresponding to Hubei is marked in
red. (B) The effect (on the Hubei dynamics of infected and latent cases) of reducing R0,
free and tα to the mean values of other Mainland China provinces. Both the unperturbed
Hubei dynamics and the sum of infected and latent cases for all other provinces are
included as references.
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6. Conclusions

In this study, we applied a systems biology approach to develop a

novel method of COVID-19 transmission dynamics. The model includes

(time-dependent) social distancing measures in a simple manner, consistent

with the compartmental mechanistic nature of the underlying process. The

model has a major advantage that it is independent of the specific transmis-

sion process considered, and requires only commonly available count data as

an input. The model allows extracting key infection parameters from the

data that are readily available and publicly accessible (both for China and

other countries), so that, in a nutshell, our approach is of wide applicability.

To our best knowledge, such parameters (necessary to assess any future

COVID-19 risks), were not extracted by other computational approaches.

The developed method is subsequently applied to the problem that

appears highly non-trivial, i.e., to understand the puzzle created by the dras-

tic differences in the infection and fatality counts betweenHubei and the rest

of Mainland China. The goal was to determine if it is possible to consistently

explain such drastic differences by the same model, and what are the

resulting numerical estimates and conclusions. We found that Hubei was

a suitable ground for infection transmission, being an outlier with respect

to two key infection progression parameters: having significantly larger

R0,free, and a longer time needed to move a sizable fraction of the population

from susceptible to a protected category. While stricter measures were for-

mally introduced in Hubei, the initial phase of the outburst put a large strain

on the system, arguably leading to less effective measures compared to other

provinces.

The fact that the initial epidemic in Hubei was not followed by similar

outbursts in the rest ofMainland China may be understood as a serendipitous

interplay of the two factors noted above. While both smaller R0,free and

lower half-protection time (more efficient measures) significantly suppress

the infection curve, their effect is also qualitatively different.While lowering

R0,free more significantly suppresses the peak, decreasing the half-protection

time significantly reduces the outburst duration. Consequently, the synergy

of these two effects appears to lead to drastically suppressed infection dynam-

ics in other Mainland China provinces compared to Hubei. The number of

detected (diagnosed) cases in the entire Mainland China is, therefore,

though unintuitive, well consistent with the model, and is explainable by

a seemingly reasonable combination of circumstances. Our obtained
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negative feedback between transmissibility and effects of social distancing

may be understood in terms of larger transmissibility triggering more strin-

gent social distancing measures, where a similar conclusion was also obtained

through entirely different means (a combination of real-time human mobil-

ity data and regression analysis) (Kraemer et al., 2020).

In summary, we showed that unintuitive dissimilarity in the infection

progression for Hubei vs other Mainland China provinces is consistent with

our model, and can be attributed to the interplay of transmissibility and

effective protection, demonstrating that regional differences may drastically

shape the infection outbursts. This also shows that comparisons in terms of

the confirmed cases, or fatality counts (even when normalized for population

size), between COVID-19 and other infectious diseases, or between differ-

ent regions for COVID-19, are not feasible, and that parameter inference

from quantitative models (individually for different affected regions) is nec-

essary. Consequently, this paper illustrates that utilization of uncommon

strategies, such as systems biology application to mathematical epidemiol-

ogy, may significantly advance our understanding of COVID-19 and other

infectious diseases.
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