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Efficient transcription initiation in bacteria: an
interplay of protein–DNA interaction parameters†

Marko Djordjevic*

As the first, and usually rate-limiting, step of transcription initiation, bacterial RNA polymerase (RNAP)

binds to double stranded DNA (dsDNA) and subsequently opens the two strands of DNA (the open

complex formation). The rate determining step in the open complex formation is opening of a short

(6 bp) DNA called the �10 region, which interacts with RNAP in both dsDNA and single stranded (ssDNA)

forms. Accordingly, formation of the open complex depends on (physically independent) domains of

RNAP that interact with ssDNA and dsDNA, as well as on parameters of DNA melting and sequences of

�10 regions. We here aim to understand how these different interactions are mutually related to ensure

efficient open complex formation. To achieve this, we use a recently developed biophysical model of

transcription initiation, which allows the calculation of the kinetic parameters of transcription initiation on

the scale of whole genome. We consequently investigate kinetic properties of sequences derived from all

E. coli intergenic regions, and from more than 300 experimentally confirmed E. coli s70 promoters. We

find that interaction specificities of s70 DNA binding domains reduce the number of sequences where

RNAP binds strongly, but forms the open complex too slowly to achieve functional transcription (so-called

poised promoters). However, we find that, despite this reduction, there is still a significant number of

such poised promoters in the intergenic regions, which may provide a major source of false positives in

genome-wide searches of transcription start sites. Furthermore, we surprisingly find that sequences of

�10 regions of the functional promoters increase the extent of RNAP poising, which we interpret in

terms of an extension of a recently proposed model of promoter recognition (‘mix-and-match model’) to

kinetic parameters. Overall, our results allow better understanding of the design of s70 DNA binding

domains and promoter sequences, and place a fundamental limit on accuracy of methods for promoter

detection that are based on strong RNAP binding (e.g. ChIP-chip).

Insight, innovation, integration
In bacteria, transcription is initiated by RNA polymerase (RNAP) binding to double-stranded DNA, and by subsequent opening of the two DNA strands. Kinetic
parameters, which characterize these two steps, have to be measured individually for each sequence of interest, through an arduous experimental procedure.
To investigate the kinetics of transcription initiation on the whole genome scale, here we use a recently developed biophysical model, which allows calculating
the kinetic parameters for any sequence of interest. We find that RNAP DNA-interaction domains are designed to reduce kinetic trapping of RNAP in the
genome. On the other hand, we, surprisingly, find that sequences of functional promoters increase RNAP poising, which we interpret in terms of a recently
proposed model of promoter recognition.

1 Introduction

Transcription initiation is both the first step and a major control
point in gene expression. Transcription cannot be initiated by

core RNA polymerase alone, so a complex between core RNA
polymerase and a s factor, which is called RNA polymerase
holoenzyme (RNAP), is formed.1 Different s factors interact with
double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA)
in a sequence specific manner, and they are responsible
for transcription under different conditions.2 In this work we
concentrate on s70 (the major s factor in E. coli), which is
responsible for transcribing housekeeping genes.3

Transcription is initiated from the sequences called core
promoters. The main elements of core promoters in bacteria
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are �35 element and �10 element, where �35 and �10 refer to
typical distances of these elements from transcription start sites.4

As the first step of transcription initiation, RNAP reversibly binds
to dsDNA of promoter elements, which is called the closed
complex formation, and is described by the binding affinity KB.
The binding affinity is, therefore, determined by interactions of
s70 with dsDNA, which is exhibited through interactions of s70

domain 4.2 with�35 box, and s70 domain 2.4 with�10 box in the
dsDNA form.2

This binding of RNAP leads to opening of the two DNA
strands (promoter melting), so that a transcription bubble is
formed. This transcription bubble extends from the upstream
edge of the �10 element to about two bases downstream of the
transcription start site, which roughly corresponds to positions
�12 to +2 (+1 is the transcription start site).5 The (inverse) time
needed to form the transcription bubble (i.e. to open the two
DNA strands) is described by the transition rate from the closed
to open complex (kf). The transition rate, therefore, crucially
depends on interactions of s70 with �10 element ssDNA, which
are exhibited through s70 domain 2.3.6

Since almost the entire –10 element is a part of the
transcription bubble, this element interacts with s70 in both
dsDNA and ssDNA forms. While sequences from the down-
stream edge of the –10 element to the transcription start site
are also part of the transcription bubble, mutating these
sequences does not affect the bubble formation,7 and it is
considered that these sequences do not interact with s70 in a
sequence specific manner. Furthermore, both theoretical studies8

and single molecule experiments9 show that opening of �10
element is the rate limiting step in the transcription bubble
formation. Since the �10 box is a part of both the closed and
the open complex, there is a complex interplay of biophysical
interactions associated with this element: (i) DNA melting
energies,10 since the �10 box dsDNA is opened (melted) in the
open complex, (ii) interaction energies of s70 with dsDNA
through s70 subdomain 2.4,11 and (iii) interaction energies of
s70 with ssDNA through s70 subdomain 2.3. These three types
of interactions are physically independent, since they either
correspond to intrinsic DNA properties (for melting energies)
or are exhibited through physically distinct s70 binding domains
(for s70–dsDNA and s70–ssDNA interactions).6

Given the complex set of physically independent inter-
actions at the �10 element described above, there is a question
of how their mutual relationship leads to efficient transcrip-
tion. In particular, the RNAP binding affinity (KB) depends on
interactions of �10 box dsDNA with s70 subdomain 2.4,6 where
the stronger interaction leads to larger binding affinity. On
the other hand, a stronger interaction of s2.4 with dsDNA of
�10 element leads to a slower transition from the closed to
open complex.8 The transition rate (kf) also depends on inter-
actions of �10 box ssDNA with s70 subdomain 2.3 and on the
�10 element melting energy, both of which are physically
independent of s2.4.8,12 Due to this, KB and kf should a priori
be negatively correlated, and there may be a large number of
sequences in the genome that correspond to high KB but low kf.
We call such sequences where RNAP is strongly bound to

dsDNA (high KB), but proceeds to the open complex too slowly
to achieve functional transcription (due to small kf), poised
promoters; more generally, the term poised promoter is used
for all instances where RNAP is bound strongly to DNA, but fails
to proceed to functional transcription.13 Naively, RNAP poising
appears particularly detrimental for sequences that should be
transcriptionally active (functional promoters), since these
sequences should result in efficient transcription.

Given the kinetic issues discussed above, we here aim to
understand the following questions: (i) what is the extent of
RNAP poising in the genome? (ii) Are binding specificities of
s70 interaction domains, and/or sequences of E. coli intergenic
regions, designed to minimize the number of poised promoters?
(iii) Do sequences of functional s70 promoters (additionally)
suppress RNAP poising? We here concentrate on the intergenic
regions, rather than on the whole genome, since these regions
are relevant for transcription regulation, i.e. both transcription
start sites and regulatory elements are located in the intergenic
regions.

The questions posed above are important not only from the
point of design of s70–promoter DNA interactions, but also
from the point of searches for functional promoters in the
genome. In particular, the most common experimental method
to search for core promoters on a genome-wide scale is
ChIP-chip14 and its alternatives (e.g. ChIP-seq15). However,
immunoprecipitation (ChIP) detects DNA sequences that are
strongly bound by the protein (RNAP), rather than sequences
with a high rate of transcription initiation – which is the
parameter that defines a functional promoter. Consequently,
the high number of false positives, which is commonly associated
with ChIP-chip experiments aimed for promoter detection,16 may
indicate extensive RNAP poising in the genome. The goal of this
paper is to investigate a relationship between physical interactions
at the �10 element and RNAP poising, which provides a basis for
better understanding of the nature of false positives in ChIP-chip
experiments.

Along the same lines, DNA footprinting experiments
detected sequences that are strongly bound by RNAP, but which
result in transcriptionally inactive complexes; these inactive
complexes were shown to be due to inefficient formation of the
open complex (i.e. due to RNAP poising).17 Such observations
seem particularly important from the point of computational
searches of transcription start sites (core promoters) in the
genome, which typically lead to a very high number of false
positives. It was consequently proposed that kinetic effects – an
extreme example of which are poised promoters – can significantly
contribute to accuracy of the weight matrix (computational)
searches of promoters.18 Furthermore, an understanding of the
kinetic effects, which we will achieve in this paper, will motivate
their inclusion within more physical methods of TSS recognition.
With regard to this, it was frequently observed that coupling
biophysical models with sequence statistics provides a signifi-
cantly better prediction accuracy compared to simple statistical
models.19

In order to analyze how the interplay of different interaction
parameters leads to efficient transcription, one must be able to
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investigate kinetics of transcription initiation on a genome
wide scale. This analysis cannot be done through experiments,
since KB and kf have to be measured through work-intensive
t-plot measurements,20 individually for each sequence of inter-
est. We here instead approach the problem computationally,
where we use a recently developed biophysical model of the
open complex formation,8 which allows the calculation of the
kinetic parameters (KB and kf) for each sequence of interest.
This model showed a very good agreement with both biochemical
and genomics data, with no free parameters used in comparing
the model with the experimental data.8

We will here show that binding specificities of s70 DNA
interaction domains are designed to prevent extensive RNAP
poising in the intergenic regions, but that the number of poised
promoters is still sufficient to significantly affect accuracy of
core promoter searches. Surprisingly, we will find that
sequences of functional �10 elements increase the extent of
RNAP poising; on the other hand, overall, the sequences in the
intergenic regions have no tendency to affect RNAP poising.
Though seemingly counter-intuitive, we will argue that this
result fits well within the recently proposed mix-and-match
model of promoter recognition.21

2 Results
2.1 Design of in silico experiments

Our goal is to investigate how the interplay of physical inter-
actions at the �10 promoter region provides for efficient
transcription. We, consequently, systematically investigate
relations between the kinetic parameters as the �10 element
sequence is varied. To achieve this, we design a number of in
silico experiments, where we start from a sequence of the
lacUV5 promoter. This promoter has a consensus �10 element –
which is convenient as a reference for calculating kinetic para-
meters – but has an imperfect �35 element as is characteristic for
most functional promoters.5 In the analysis/in silico experiments
presented in the following subsections, we will substitute the
consensus �10 element of lacUV5 promoter with different sets
of DNA segments.

The biophysical model of transcription initiation8 allows the
calculation of the relevant kinetic parameters for sets of DNA
segments at the scale of the entire genome (see Methods and
ESI†). In particular, in the analysis below, we will substitute the
consensus �10 element of lacUV5 promoter with: (i) all 6 bp
long segments from E. coli intergenic regions, (ii) all �10
elements that correspond to experimentally detected E. coli
transcription start sites, (iii) segments that correspond to
randomized intergenic regions and randomized �10 elements
of experimentally detected promoters; the computational
procedure allows randomizing DNA sequences multiple times,
so that statistics of the relevant quantities can be calculated.

In the analysis below, we will also address how relevant s70

DNA-interaction domains contribute to the kinetic properties
that we investigate. Experimentally, contributions of different
protein domains to the properties of interest would be assessed
by mutating amino-acid sequences of these domains. We will

computationally assess contributions of s70 domains by
randomizing interaction specificities of these domains;
similarly as with DNA sequences, we can perform multiple
randomizations in order to calculate statistics of the relevant
quantities. Finally, we will also substitute binding specificities
of s70 domains with binding specificities of different E. coli
transcription factors, in order to ensure that the reported
relationships are not a consequence of generic properties of
protein–DNA interactions.

2.2 Kinetic properties of E. coli intergenic regions

We start from the sequence of the lacUV5 promoter, and
substitute its consensus �10 element with all 6 bp long
segments from E. coli intergenic regions. For all these substitutions
we calculate the relative binding affinity (KB) and the relative
transcription initiation rate (j), by using eqn (1) and (3) (see
Methods). The relationship between logarithms of KB and j is
shown in Fig. 1A, so that the quantities on the two axis correspond
to the appropriate interaction energies that determine the relevant
kinetic parameters. Specifically, the horizontal axis (log(KB))
corresponds to the s70–dsDNA binding energy, while the vertical
axis corresponds to a combination of the energy terms that we
refer to as the effective energy and which directly determines the
transcription initiation rate (see eqn (3) and (4) in Methods).

Both KB and j, which are shown in Fig. 1A, are calculated
relative to the binding affinity and the transcription initiation
rate of the lacUV5 promoter. Note that we substitute (vary) only
the �10 element of lacUV5 promoter, and that �10 element of
this promoter corresponds to the consensus sequence
(‘�12TATAAT�7’). Consequently, zeros on the horizontal and
the vertical axis correspond to the consensus �10 element,
and stronger interaction energies correspond to larger (less
negative) values on the two axes. The horizontal line in Fig. 1
(transcription rate threshold) indicates the transcription rate
below which transcript levels cannot be detected, while the
vertical line (binding threshold) indicates the binding affinity
above which a sequence is considered to be strongly bound by
RNAP. The transcription rate threshold is set based on the estimate
that the minimal rate of transcription is 1/400 per second, while the
transcription rate of the reference lacUV5 can be estimated at
1/3 per second.22 The binding threshold is set so that it
corresponds to the binding affinity of a weak Plac promoter,
with sequences of �35 element and �10 element that corre-
spond, respectively, to ‘�36TTTACA�31’ and ‘�12TATGTT�7’;23

this definition is in accordance with an intuitive notion that
strongly bound sequences should have a larger binding affinity
than a weak promoter.

Fig. 1A shows that there is a high positive correlation (with
a Pearson correlation coefficient of R = 0.85) between the
transcription activity and the binding affinity for �10 elements
derived from E. coli intergenic regions. One should note that
the determinants of binding affinity and transcription activity
are physically independent (see the previous section), so the good
correlation has to be due to the design of s70 interaction domains
or due to the sequence of DNA intergenic segments, which is
further explored in the next subsection. However, despite this high
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correlation, a significant fraction of the strongly bound
sequences corresponds to poised promoters: in Fig. 1, the green
dots mark strongly bound DNA segments that correspond to
the functional promoters (i.e. to sequences that are above both
the binding and the transcription activity threshold), while the
red dots mark the sequences that correspond to the poised
promoters (i.e. to sequences that are above the binding, but
below the transcription activity threshold). One can see that a
significant fraction of the strongly bound sequences (B30%)
correspond to poised promoters. Such poised promoters can be
falsely identified as targets by computational and experimental
searches of core promoters, which we will further discuss in the
next section.

2.3 Analyzing the good correlation between the transcription
rate and the binding affinity

In this subsection, we concentrate on the properties of
s70–DNA interactions that lead to the good correlation between
the transcription activity and the binding affinity, which is
observed in Fig. 1A. As discussed above, KB depends on s70

interactions with �10 element dsDNA, while j depends on
interactions of s70 with �10 box ssDNA and on DNA melting
energies.8 Since KB and j are physically independent of each
other, there is a question of why there is a good correlation
between the transcription rate and binding affinity that is
observed in Fig. 1A. The first possibility is that this good

correlation is due to the sequence of E. coli intergenic regions,
i.e. the presence of poised promoters is suppressed in these
sequences. This possibility might be reasonable, since existence of
a large number of poised promoters could be detrimental for
efficient transcription initiation (see also Discussion). The second
possibility is that the good correlation is due to the design of
s70 DNA interaction domains (specifically due to the binding
specificities of s70 subunits 2.3 and 2.4). We test these two
possibilities below.

In order to generate an appropriate ensemble to test the
possibility that the good correlation is due to the DNA sequence,
we next randomize the DNA sequence of E. coli intergenic regions
50 times. The randomizations are performed so that frequencies of
the nucleotides are preserved (see Methods). We next re-calculate
the correlation coefficient between the transcription rate and the
binding affinity for each of the 50 randomized sequences, and
obtain the mean for these 50 randomizations as %R = 0.84
(the relationship between the transcription rate and the binding
affinity for one such randomization is shown in ESI,† Fig. S1).
This value ( %R = 0.84) is only somewhat smaller compared to
the correlation coefficient for the actual E. coli intergenic regions
(R = 0.85). Consequently, the design of the DNA sequence of the
intergenic regions is not a reason for the high correlation between
the transcription rate and the binding affinity.

As the second possibility, we analyze if the high correlation
is due to the design of the binding specificities of s70 DNA

Fig. 1 Log transcription rate (log(j)) vs. log binding affinity (log(KB)) for the intergenic segments. �10 element of the lacUV5 promoter is substituted by all 6 bp long
segments from E. coli intergenic regions. log(KB)and log(j) are calculated for each of these substitutions and shown, respectively, on the horizontal and the vertical
axes on each of the panels. Both log(KB)and log(j) are calculated relative to the values for the lacUV5 promoter, so that zero of the energies corresponds to the
consensus �10 element, and the stronger interactions correspond to larger (less negative) values on the two axes. The horizontal and the vertical dashed lines
correspond, respectively, to the transcription rate threshold and the binding affinity threshold. Green and red dots in the figure correspond to the strongly bound DNA
sequences that are, respectively, functional promoters and poised promoters. The four panels correspond to the relationship between log(j) and log(KB) for: (A) actual
s70 interaction parameters, (B) permutation of the melting energies, (C) randomized interaction specificities of s70 subdomain 2.3 (s70–ssDNA interactions), and (D)
randomized interaction specificities of s70 subdomain 2.4 (s70–dsDNA interactions). The figure shows a good correlation between the binding affinity and the
transcription initiation rate, though a significant number of poised promoters is still present (panel (A)). Panels (B)–(D) indicate that good correlation depends on all
three types of the interaction parameters that are relevant for transcription initiation.
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interaction domains. To test this possibility, we randomize
the binding specificities that correspond to s70 subunit 2.3
(s70–ssDNA interactions) and 2.4 (s70–dsDNA interactions) and
DNA melting energies (see Methods). We first permute the two
parameters that – in the single nucleotide approximation –
characterize DNA melting (melting energies of A:T and G:C
pairs – see Methods); the effect of this permutation is shown in
Fig. 1B. In Fig. 1C and D we show the effect of randomization
of, respectively, s70 binding domains 2.3 and 2.4.

Fig. 1B–D show that (separately) randomizing each of the
interaction energies leads to a large decrease in the correlation
coefficient, and to a consequent large increase in the fraction of
poised promoters (the red dots in Fig. 1B–D). In particular,
note that not only randomizations of the interaction domain
specificities (Fig. 1C and D), but also the permutation of the
melting energies (Fig. 1B) lead to a significant decrease in the
correlation coefficient. This indicates that the reduction of
RNAP poising in the genome depends on an interplay of all
the relevant parameters (i.e. on the mutual relation between
ssDNA, dsDNA and melting energy parameters).

To test statistical significance of the results, in Fig. 1C and D,
we calculate correlation coefficients for 50 randomizations
of ssDNA interaction parameters (s70 subunit 2.3), and for 50 ran-
domizations of dsDNA interaction parameters (s70 subunit 2.4).
The mean values and 95% confidence intervals for these rando-
mizations are shown in the histogram (see Fig. 2). For compar-
ison, the correlation coefficient for the actual (wild type)
interaction parameters and for the permutation of the melting

parameters are also indicated. We see that all the randomiza-
tions indeed lead to a statistically significant (and large) decrease
in the correlation coefficient. Consequently, the reduction in the
number of poised promoters in the intergenic regions depends
on the mutual relationship of all physical parameters that are
relevant for opening the �10 element.

Finally, from Fig. 2 one can also note that randomization of
dsDNA interaction parameters (s70 domain 2.4) leads to an
almost complete loss of the correlation. The reason for this
loss is that the binding affinity depends exclusively on
dsDNA interactions, while the transcription rate depends on
dsDNA interactions through only one out of six bases of the
�10 element (base �12) (see eqn (1), (3) and (4)). Consequently,
randomization of dsDNA interactions leads to an almost com-
plete loss of the relation between the binding affinity and the
transcription rate.

2.4 Substitutions of r70 DNA interaction domains

In this subsection, we provide further evidence that the binding
specificities of s70 interaction domains are designed to prevent
extensive RNAP poising. Specifically, while we established
that the good correlation is due to the specificities of s70

DNA-binding domains, it remains to be confirmed that the
effect is not an artificial consequence of some generic property
of protein–DNA interactions. For example, such an artifact
would arise if protein–DNA binding domains would have a
general tendency to recognize similar AT rich sequences. To
test this, we substitute specificities of binding domains 2.3 and
2.4 with specificities of different E. coli DNA binding proteins.
Parameters of protein–DNA interactions are inferred from
binding sequences assembled in DPInteract database,24 by
using the QPMEME algorithm.19b

From DPInteract database we can infer, with a high relia-
bility, interaction specificities of 8 E. coli transcription factors
(see Methods). We then substitute specificities of RNAP binding
domains 2.3 and 2.4 with these inferred specificities, which
makes a total of 56 substitution pairs; note that we do not allow
for the same E. coli transcription factor specificity to substitute
both s70 domains 2.3 and 2.4. For each of these substitutions we
calculate correlation between the rates of transcription and
binding affinities, as described in the previous subsection. The
distribution of the correlation coefficients for the substitutions is
shown in Fig. 3, and the correlation for the actual s70 binding
domains is also indicated in the figure for comparison. We see
that the correlation in the case of the actual s70 binding
domains is significantly larger compared to all the substitutions,
with a very high statistical significance (P value of B10�24).
Therefore, the good correlation is not an artificial consequence
of some generic property of protein–DNA interactions, and
interaction domains of RNAP are indeed ‘‘hardwired’’ so as to
reduce RNAP poising in the genome.

2.5 Kinetic properties of experimentally detected r70

promoters

We next investigate kinetic properties of �10 elements asso-
ciated with 342 experimentally confirmed transcription start sites.

Fig. 2 Statistics of the interaction parameter randomizations. The first two bars
in the histogram indicate the correlation coefficients between the transcription
rate and the binding affinity for, respectively, the actual (wild type) s70 binding
specificities (labeled as ‘‘wt’’), and for the permutation of the melting parameters
(labeled as ‘‘melt’’). For the last two bars, the ssDNA (s70 subunit 2.3) and
dsDNA (s70 subunit 2.4) binding specificities are randomized 50 times, and the
correlation coefficients between the transcription rate and the binding affinity
are calculated for each of these randomizations. The mean value and 95%
confidence limits, which correspond to the randomizations for ssDNA interaction
parameters (the third bar, labeled as ‘‘ssDNA’’) and for dsDNA interaction
parameters (the last bar, labeled as ‘‘dsDNA’’), are shown. The figure shows that
the correlation coefficient is significantly reduced by randomization of any of the
relevant sets of parameters, so that the high correlation constant depends on an
interplay of all these parameters.
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Selection of the transcription start sites with experimentally
confirmed transcription activity from RegulonDB database,25 and
alignment of �10 elements associated with these transcription
start sites, is described in Methods. We substitute the consensus
�10 element of the lacUV5 promoter with these aligned
�10 elements, and for each of these substitutions we calculate
the transcription rate and the binding affinity; the obtained
relationship between these two quantities is shown in Fig. 4A.

One may expect that RNAP poising at the transcriptionally
active sequences should be suppressed to a larger extent
compared to the generic segments from the intergenic regions.
However, in contrast to this expectation, we find that
the correlation in the case of the transcriptionally active
�10 elements is notably smaller than the correlation for the
intergenic segments (0.75 vs. 0.84, compare Fig. 4A with
Fig. 1A); to further assess this result, we analyze how the
correlation changes when functional�10 elements are randomized.
To obtain appropriate statistics, we randomize the set of aligned
�10 elements 50 times, and then calculate the correlation
coefficient for each randomization. Consistent with the result
obtained above, the mean of the correlation coefficients for these
randomizations is notably larger compared to the correlation
for the actual �10 elements (0.85 vs. 0.75), with a very high
statistical significance (P B 10�39). Therefore, the DNA
sequences of the transcriptionally active �10 elements indeed
significantly decrease the correlation between the transcription
rate and the binding affinity, and consequently increase the
extent of RNAP poising.

Finally, to visualize the effect of �10 element randomization,
we show the relationship between the transcription rate and the
binding affinity, for one instance of �10 element randomization

(Fig. 4B). Despite the fact that the correlation coefficient in
Fig. 4A (actual �10 elements) is notably smaller compared to
Fig. 4B (randomized �10 elements), almost all strongly bound
sequences for the actual �10 elements correspond to functional
promoters. The small number of poised promoters in Fig. 4A is
due to the fact that the binding affinity and the transcription rate
are (as expected) ‘shifted’ toward the higher values for the
transcriptionally active �10 elements. Consequently, higher
values of the kinetic parameters for the transcriptionally active
�10 elements are, as expected, the main mechanism for evading
RNAP poising. In the next subsection we discuss a more subtle
mechanism for evading poised promoters, which we relate to the
‘mix-and-match’ model of promoter recognition. Finally, note
that randomizing �10 elements (Fig. 4B) leads to roughly the
same fraction of poised promoters as for the intergenic segments
(Fig. 1A), since, upon randomization, magnitudes of both the
transcription rate and the binding affinity decrease.

2.6 Extension of the mix-and-match model to kinetic
parameters

We here establish a connection between the surprising decrease
in the correlation coefficient for functional �10 elements and a
recently proposed mix-and-match model of promoter recogni-
tion.21 The mix-and-match model initially proposed that the
strengths of the promoter elements, that interact with dsDNA,
complement each other so as to achieve a necessary level of
overall binding affinity. Subsequently, a more detailed statistical
analysis showed that promoter elements match each other to

Fig. 3 Substitutions of s70 binding specificities. The binding specificities of s70

domains 2.3 and 2.4 were substituted with different combinations of
the interaction specificities for 8 different E. coli transcription factors. Gray bars
correspond to the histogram of the correlation coefficients between the
transcription rate and the binding affinity for these substitutions. Correlation
coefficient in the case of the actual RNAP binding domains is indicated by the
vertical dashed line. The figure shows that the binding specificities of the actual
(wild type) s70 interaction domains lead to a significantly larger correlation – and
consequently a larger reduction in RNAP poising – compared to all of the
substitutions.

Fig. 4 The relationship between the transcription activity and the binding
affinity for actual and randomized �10 elements of experimentally inferred s70

promoters. Transcription start sites with experimentally established transcription
activity were selected from RegulonDB database (see Methods). These transcrip-
tion start sites were next used to align 342 �10 elements, according to the
procedure described in Methods; we further refer to these segments as actual
�10 elements. The actual �10 elements were then randomized such that the
nucleotide frequencies are preserved (see Methods). The relationship between
the log transcription rate and the log binding affinity is calculated and plotted
for (A) the actual �10 elements and (B) the randomized �10 elements. The
figure shows that, surprisingly, sequences of actual (experimentally established)
�10 elements result in increased RNAP poising.
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achieve a necessary level of total promoter strength.26 We here
consider an extension of this model to the kinetic parameters,
where we propose that the binding affinity and the transition rate
match each other to achieve a necessary level of transcription
activity.

To test such extension of the mix-and-match model, we start
from the intergenic segments (analyzed in Fig. 1A), and from
the transcriptionally active �10 elements (analyzed in Fig. 4A).
From each of these two sets of sequences, we select the
following two subsets: (i) 30% of the sequences with the highest
value of the transition rate from the closed to open complex (kf)
and (ii) 30% of the sequences with the lowest value of the
transition rate. The transition rates from the closed to open
complex (kf) are calculated according to eqn (2) (see Methods).
We next calculate the distribution of the binding affinities for
these two subsets – i.e. for the sequences with the high and
the low values of the transition rate – by using eqn (1)
(see Methods). For the intergenic segments, the distributions
for the two subsets are shown together in Fig. 5A. Similarly, the
two distributions for transcriptionally active �10 elements are
shown together in Fig. 5B.

In Fig. 5A, we see that, for the intergenic segments, the mean
binding affinity is significantly smaller for the group with small
kf values than for the group with high kf values (P o 10�100).
This property decreases the extent of RNAP poising for the
intergenic segments, i.e. sequences with low values of the
transition rates are generally not characterized by high values
of the binding affinities. Note that this result is directly related
to the high value of the correlation between the binding affinity
and the transcription rate for the intergenic segments.

On the other hand, for the transcriptionally active �10
elements, the distribution of the binding affinities for the
group with low kf is shifted towards the stronger binding
affinities, relative to the same distribution for the intergenic
segments. As a consequence, for transcriptionally active �10
elements, the group of promoters with high kf values has
smaller mean binding affinities compared to the group with
low kf values (with P o 0.05). This result is a consequence of
the decrease in the correlation coefficient between the tran-
scription rate and the binding affinity for the transcriptionally
active �10 elements relative to the intergenic segments (Fig. 4A
vs. Fig. 1A), and is analyzed below in terms of the mix-and-match
model for promoter recognition.

Though unexpected, the result in Fig. 5B is straightforward
to interpret in terms of the extension of the mix-and-match
model to kinetic parameters. This figure shows that KB and kf

complement each other, so that lower kf is accompanied by
higher KB; this is notably different from the intergenic regions,
where sequences with low kf have tendency to have low KB. This
match of the kinetic parameters for the transcriptionally
active �10 elements allows us to achieve a sufficient level of
transcription activity (which is proportional to the product of
KB and kf). This result, and the extension of the mix-and-match
model to kinetic parameters, is further discussed in the next
section.

3 Discussion

Interactions of s70 with �10 promoter elements are crucial
for initiation of transcription. These interactions involve s70

binding domains that interact with dsDNA and ssDNA, as
well as DNA melting energies. We here analyzed how the
interplay of these interactions affects kinetics of transcription
initiation. A prominent example of such kinetic effects are
poised promoters, which are sequences where RNAP strongly
binds to dsDNA, but has a too slow transition from the closed
to open complex to achieve detectable transcription levels.
Extensive RNAP poising could be detrimental for efficient
transcription, since unproductively bound RNAP can disrupt
normal transcription regulation – e.g. note that the bound
RNAP molecule protects B75 bps of DNA, which is often
comparable to the size of E. coli intergenic regions.27

Such unproductive binding can also require a significantly
larger RNAP production, in order to achieve a sufficiently high
RNAP concentration for function of transcriptionally active
promoters.

Consequently, it seems plausible that specificities of different
interactions and DNA sequences, which are involved in
transcription initiation, are somehow tuned to prevent RNAP
poising. We here investigated this possibility and showed that
s70–DNA interaction domains, though physically independent,
are designed to reduce the extent of RNAP poising in the
intergenic regions. This reduction depends on a mutual relation-
ship between all three types of the interaction parameters
(ssDNA, dsDNA and melting energies), which strongly suggests
that binding specificities of s70–DNA interaction domains are

Fig. 5 Complementing kinetic parameters. Substitutions of �10 element of the
lacUV5 promoter with (A) intergenic segments and (B) transcriptionally active
�10 elements were divided into two groups. The first group corresponds to 30%
of the sequences with the highest transition rates from the closed to open complex
(kf), while the second group corresponds to 30% of the sequences with the lowest
transition rates. The distribution of the binding affinities (KB) is calculated and
plotted for both the low kf group (dark gray), and the high kf group (light gray).
The figure shows that the kinetic parameters for functional promoters comple-
ment each other, so that�10 elements with low kf have tendency to have high KB.
This is in contrast to the tendency for the intergenic segments, where sequences
with low kf are generally also accompanied with low KB.
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tuned to evade a large number of poised promoters in the
intergenic regions. As another evidence that reduction of RNAP
poising is a major ‘design’ constraint on specificities of s70–DNA
interaction domains, we found that the actual s70 binding
specificities lead to a much larger correlation between binding
affinity and transcription rate compared with substitutions of
these domains with specificities of other E. coli transcription
factors.

It is interesting that the reduction in the number of
poised promoters depends on the binding specificities of s70

interaction domains, rather than on the sequence of the
intergenic regions. Such design may allow modularity in
reduction of RNAP binding through different bacterial species:
while binding specificities of s70 interaction domains are
known to be well conserved across different bacteria,5

DNA sequences of the intergenic regions are widely different.
Therefore, imposing the reduction in the number of poised
promoters at the level of (conserved) interaction domains,
rather than at the level of (variable) DNA sequence, provides a
straightforward strategy to impose reduction of RNAP poising
in diverse bacterial sequences. Furthermore, there are likely
numerous simultaneous constraints on bacterial regulatory
(intergenic) regions, since these regions must accommodate a
number of functional motifs (e.g. core promoters, transcription
factor binding sites, terminators). Due to this, tuning the
binding specificities of s70 interaction domains may be easier
than imposing the absence of poised promoters at the level of
DNA sequence.

The fact that s70 interaction domains are designed to reduce
the number of poised promoters implies that any DNA
sequence will have a tendency for high correlation between
the binding affinity and the transcription activity. Such high
correlation was also observed for DNA sequences of transcrip-
tionally active promoters. However, we found that DNA
sequences of these promoters have a tendency to decrease
this correlation, i.e. to increase the extent of RNAP poising.
This finding is surprising, since one may expect that transcrip-
tionally active sequences should evade RNAP poising.

To better understand this result, it is useful to discuss it
from the point of the recently proposed mix-and-match model
of promoter recognition. This model proposes that strengths of
promoter elements mix with each other, and match each other
strengths, so as to achieve the necessary level of promoter
strength.21,26 For example, a weaker �10 element may be
complemented by a stronger �35 element, so that a necessary
level of transcription activity is achieved.28 Actually, Fig. 4A
shows that many substitutions of the �10 element of the
lacUV5 promoter with �10 elements that correspond to the
experimentally detected TSS fall below either the binding
affinity or the transcription rate threshold. It is likely that, for
a substantial number of such �10 elements, the strengths of
the other elements within the promoter (�35 element, spacer)
are adjusted (‘matched’) so that the kinetic parameters for the
entire promoter are above the thresholds. Furthermore, one
should note that some of the known promoters depend on
transcription factors in order to achieve sufficient binding

affinity and transcription rate, so that their basal values of
the kinetic parameters are below the relevant thresholds.

We here proposed to extend the mix-and-match model to the
kinetic parameters; consequently, the observed decrease in the
correlation between the binding affinity and the transcription
activity can be explained by the need to match the lower
transition rate from the closed to open complex with higher
binding affinity. Our results show that, though statistically
significant, this decrease in the correlation is still small enough
as not to turn a transcriptionally active promoter into a poised
promoter. That is, the observed increase of RNAP poising
at functional promoters is such that to allow matching of
the kinetic parameters, but not such to cause dysfunctional
transcription.

We here predicted that a significant fraction of the strongly
bound sequences correspond to poised promoters. This
prediction may have a direct consequence on experiments that
identify transcription start sites by detecting sequences to
which RNAP strongly binds, such as ChIP-chip or ChIP-
seq experiments; such measurements provide experimental
strategy to detect transcription start sites on a genome-wide
scale. Actually, it is interesting that the number of poised
promoters, which is estimated here (B30% of the strongly
bound sequences), roughly matches with the reported number
of false positives in ChIP-chip experiments.16 However, care
must be taken when literally comparing false positives in ChIP-
chip experiments with our in silico results, due to possible
different choices of the binding thresholds. That is, the binding
threshold is to a good degree provisional in ChIP-chip experi-
ments, i.e. it depends on the signal intensity above which the
sequences are considered to be targets. Therefore, the binding
threshold is likely different from one ChIP-chip experiment to
the other, and may also be different from the choice of binding
threshold in our study. Consequently, it is likely that false
positives in ChIP-chip experiments come from both sequences
that are poised promoters and from technical issues such as
biases in DNA amplification or imperfect immunoprecipita-
tions of DNA fragments cross-linked to protein.

Furthermore, the importance of the kinetic effects strongly
suggests that they should be incorporated in bioinformatic
methods for TSS detection. In fact, TSS detection in bacteria
is a classic bioinformatic problem, where available methods
show poor accuracy.18b,24,29 An alternative to current methods,
which are based on information theory, is a biophysics method
that would detect promoters based on the calculated transcrip-
tion rate. A major difficulty in developing such a method is that
interactions of s70 with �35 element have (to our knowledge)
not been measured until now. Note that in our in silico
experiments we varied the �10 element, while the sequence
of �35 element remained constant. While such a design is
evidently useful for studying the interplay of physical inter-
actions at the �10 element, it is not convenient for promoter
detection, since promoters sample sequences with variable
�35 elements. A solution to this problem may be a mixed
bioinformatic and biochemical parameterization, which is our
work that is currently in progress.
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4 Conclusion

In this work, we investigated kinetic effects of transcription
initiation on a genome-wide scale. Such analysis is, to our
knowledge, the first of its kind, since there is currently no
high-throughput method for measuring kinetic parameters of
transcription initiation for sequences of interest. Consequently,
the kinetic parameters have to be experimentally measured
through classical, but time-consuming, t-plot measurements,
individually for each sequence of interest. To overcome this
difficulty, we here used a quantitative model of transcription
initiation, which showed a very good agreement with experi-
mental data, and which allows efficient calculation of the
kinetic parameters. The computational procedure also allowed
repeatedly altering both specificities of s70–DNA interaction
domains, and relevant DNA sequences, which is experimentally
not feasible. We consequently designed a set of in silico experi-
ments, which use a model of the specific biochemical process
(transcription initiation), in order to study kinetics of transcrip-
tion initiation on a much larger (whole genome) scale.

Through the in silico experiments we found that the extent of
RNAP poising in the genome is highly suppressed, where this
suppression is at the level of s70 interaction domains, rather
than the DNA sequence. However, despite this suppression, a
significant fraction of the sequences that are strongly bound by
RNAP correspond to poised promoters. This significant fraction
of poised promoters is directly relevant for interpreting results
of experimental and computational searches of transcription
start sites. Furthermore, we surprisingly found that sequences
of the functional promoters increase the extent of RNAP
poising, which we interpreted in terms of the mix-and-match
model of promoter recognition. Overall, the analysis presented
here strongly suggests that the kinetic effects are important,
and that they should be incorporated in methods for core
promoter detection. It is likely that this will allow both increasing
the accuracy of computational predictions and better understanding
the results of the experimental searches.

5 Methods
5.1 Calculation of the kinetic parameters

To calculate the relevant kinetic parameters, we use a bio-
physical model of transcription initiation.8 For completeness,
in ESI,† we summarize elements of this model that are directly
relevant for the analysis presented here. Briefly, the model is
used to express the rate by which RNAP opens the two DNA
strands, in terms of the interactions of s70 with ssDNA and
dsDNA, and DNA melting energies. To parameterize the model,
we use a widely used independent nucleotide approximation,30

according to which the interaction energies are given by the
sum of the terms that correspond to different bases at different
positions. Also, in this study we vary only the sequence of the
�10 element, so that the energy terms that are associated with
�35 element interactions and spacer lengths do not enter the
relevant equations. Consequently, the binding affinity KB,
the rate of transition from the closed to open complex kf, and

the rate of transcription initiation j are given below, respec-
tively, by eqn (1), (2) and (3) (see ref. 8 and ESI†):

log KBðSÞð Þ � c�
X6
i¼1

X4
a¼1

DG dsð Þ
i;a

.
kBT

� �
Si;a (1)

log kf Sð�10Þ
� �� �

¼ cþ
X6
i¼2

X4
a¼1

DGðmÞa

.
kBT þ DGðdsÞi;a

.
kBT � DGðssÞi;a

.
kBT

� �
Si;a

(2)

logðjðSÞÞ ¼ cþ
X6
i¼1

X4
a¼1

DGðeffÞi;a Si;a (3)

where in the last equation we introduced the effective binding
energy DG(eff)

i,a :

DGðeffÞi;a �
�DGðssÞi;a þ DGðmÞa

� �.
kBT for i 2 ð2; 6Þ

�DGðdsÞi;a

.
kBT for i ¼ 1

8><
>:

(4)

In the equations above, the index i denotes different positions
within the �10 box, so that i = 1 corresponds to the position
�12, while i = 6 corresponds to the position �7, relative to the
transcription start site. Further, a denotes the four different
bases (A, T, C or G), while Si,a is equal to one if base a is present
at position i in sequence S, and is equal to zero otherwise.
Furthermore, DG(m)

a denotes the melting energies of different
bases, DG(ss)

ia denotes the interaction energies of s with different
bases at different positions of the non-template strand in the
open complex, and DG(ds)

ia denotes the interaction energies of s
with different bases at different positions of duplex DNA for the
�10 box. Note that the base�12 (i = 1) appears asymmetrically in
the expression for the effective energy (see eqn (4)), since this is
the only base of the �10 element that remains double stranded
in the open complex.6 Also, note that due to the symmetry of the
two DNA strands DG(m)

A = DG(m)
T and DG(m)

C = DG(m)
G , so that there

are effectively two parameters that determine melting energy in
the single nucleotide approximation.

5.2 Alignment of �10 promoter elements

To align �10 elements, we use the assembly of transcription
start sites from RegulonDB database.25 This assembly includes
both experimentally verified promoters and computational
predictions, and corresponds to both s70 and alternative s
factors. For our alignment, we select only experimentally
verified s70 transcription start sites, i.e. we disregard all tran-
scription start sites that are either not experimentally validated,
or correspond to alternative s factors. This selection results in
the total of 342 s70 transcription start sites, and we use the
obtained start sites in order to extract DNA segments that
correspond to positions �17 to �2, relative to the transcription
start sites. These positions were chosen having in mind that the
position of �10 element can deviate for 5 bps relative to its
canonical position (�12 to �7).31
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To identify the 6 bp long�10 elements within the selected DNA
segments, we used the Gibbs sampler.32 The Gibbs sampler
implements a version of the Gibbs search algorithm,33 which is
used to perform unsupervised motif alignment. Only the DNA
strand defined by the direction of transcription was searched, since
both �10 box and �35 box motifs are not palindrome symmetric.
The search was done with the initial assumption that one motif
element is present in each DNA segment; however, in the end of the
Gibbs sampler search, individual motif elements are added in or
taken out, in a single pass of the algorithm, depending upon
whether or not their inclusion improves the value of the alignment
score. The last step allows excluding from the alignment those
sequences that do not contain �10 box motifs, e.g. due to database
miss-assignments. The search resulted in the identification of 322
aligned�10 boxes that correspond to the experimentally confirmed
s70 transcription start sites in E. coli; these aligned �10 elements
were used in the further analysis.

5.3 Randomization of interaction specificities and DNA segments

We aim to randomize the interaction specificities, without
changing the overall strength of s70–DNA interactions. To
achieve this, it is useful to visualize the interaction parameters
in the form of a matrix, where index i corresponds to different
positions within the �10 element, while index a corresponds to
four different bases. Overall interaction strength for energy
matrix ei,a can be defined as

P
i;a

ei;a 2.19b Consequently, to rando-

mize the interaction specificities, we randomly permute
elements of the interaction matrix, which randomizes the
interaction specificity but does not change

P
i;a

ei;a 2. In order to

obtain statistics for quantities of interest, we randomize a given
matrix 50 times, according to the procedure described above. In
order to randomize the interactions corresponding to DNA
melting, we simply permute energies that correspond to
AT (DG(m)

A = DG(m)
T ) and GC base pairs (DG(m)

C = DG(m)
G ). This

procedure results in a single randomization, and is a consequence
of the fact that in the single nucleotide approximation there are
only two parameters that describe DNA melting (see above).

We randomize DNA sequences, i.e. intergenic regions and
�10 elements that correspond to the experimentally confirmed
transcription start sites (see above), by randomly permuting the
bases within the sequences. Note that such randomization
preserves nucleotide (GC) content of the sequences. Similar to
s70–DNA interaction domains, to obtain appropriate statistics
we randomize a given DNA sequence 50 times.

5.4 Interaction parameters for E. coli transcription factors

We use protein–DNA interaction parameters that were obtained
in ref. 19b. These interaction parameters were inferred from
E. coli transcription factor binding sites which were assembled
in DPInteract database.24 The interaction parameters were
inferred from the example binding sites by using the QPMEME
(Quadratic Programming Method of Energy Matrix Estimation)
algorithm.

To ensure a high accuracy of the inferred protein–DNA
interaction parameters, we select those transcription factors
(i.e. their corresponding interaction parameters), for which the
following two conditions are satisfied: (i) the number of the
example binding sites assembled in DPInteract database is
larger than 10, (ii) over representation for the transcription factor
is also larger than 10. The first condition ensures that too few
example binding sites do not lead to overfitting of the interaction
parameters. The second condition (over representation) is
related to a measure of significance/functionality of the inferred
interaction parameters.19b This procedure results in selection of
the interaction parameters for eight E. coli transcription factors.

We then use the inferred interaction parameters for the
selected E. coli transcription factors in order to substitute
interaction specificities of s2.3 (s70–ssDNA interactions) and
s2.4 (s70–dsDNA interactions) binding domains. A technical
difficulty is that the length of s2.3 and s2.4 binding sites (5 bps and
6 bps, respectively) is generally different (shorter) than the length of
binding sites of the selected E. coli transcription factors. To resolve
this difficulty, we select a subset of adjacent positions that
correspond to maximal binding specificity within the interaction
domain of each transcription factor; the length of the selected
adjacent positions corresponds to the length of s2.3 or s2.4 binding
positions (i.e. 5 bps or 6 bps). To select the adjacent positions with
maximal specificity, we use a definition of the binding specificity si

at position i of the energy matrix ei;a : si ¼
P
a
ei;a 2.
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