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Abstract
A recently emerging discipline of synthetic biology has the aim of constructing new
biosynthetic pathways with useful biological functions. A major application of these pathways
is generating a large amount of the desired product. However, toxicity due to the possible
presence of toxic precursors is one of the main problems for such production. We consider
here the problem of generating a large amount of product from a potentially toxic substrate. To
address this, we propose a simple biosynthetic pathway, which can be induced in order to
produce a large number of the product molecules, by keeping the substrate amount at low
levels. Surprisingly, we show that the large product generation crucially depends on fast
non-specific degradation of the substrate molecules. We derive an optimal induction strategy,
which allows as much as three orders of magnitude increase in the product amount through
biologically realistic parameter values. We point to a recently discovered bacterial immune
system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also
argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as
a strategy to produce a large amount of the desired molecules with small perturbations of
endogenous biosynthetic pathways.

1. Introduction

Synthetic biology is an emerging scientific discipline, which
aims to design novel biological circuits for desired applications
[1]. There has recently been a great deal of progress (e.g.
in DNA synthesis and sequence manipulation) that enhances
the construction of these new pathways [2, 3]. However, the
development of these technological tools has outpaced our
understanding of the fundamental design principles for the
construction of these circuits [4].

A major application for synthetically designed pathways
is to produce a large amount of the desired molecules.
However, one of the main obstacles in such production is
the toxicity due to the possible presence of toxic precursors
[4–6]. Consequently, we consider here the problem of how to
keep the substrate (that can be toxic above some level) at small
amounts, while producing a large amount of useful molecules
upon system induction.

To address this problem, we consider a simple
biosynthetic pathway, which is represented by the set of
biochemical reactions shown in figure 1. This reaction set
defines a process where the substrate s is generated with rate
φ, degraded with rate λs and processed to product p with rate k.
The product is further degraded with rate λp. We, furthermore,
assume that both φ and k are subject to regulation, i.e. can be
increased when the system is induced (when a large amount
of the product needs to be generated). The decay rates (λs and
λp) are constants that characterize the system.

Based on the discussion above, our goal is to find an
optimal strategy for activation of the system in figure 1.
Specifically, this strategy should satisfy the following: (i) there
is a large relative increase in the product amount, upon the
system induction, (ii) the amount of the substrate [s] does not
increase (remains low), when the system is induced, (iii) the
initial (uninduced) substrate amount should be comparable to
the product amount. The last condition provides that the initial
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Figure 1. Proposed biosynthetic pathway. s and p correspond,
respectively, to a substrate and a product. The substrate s and the
product p decay, respectively, with rates λs and λp. The substrate s is
generated with rate φ and converted to the product with rate k.

amount of (potentially toxic) substrate is low. In addition to
these basic conditions, we also aim that the system induction
is achieved with as small a change in the parameter values as
feasible.

In this paper, we will show that the simple system
presented by figure 1 is capable of producing the behaviour
defined above. We will also derive a realistic induction strategy,
for which the above conditions are optimally satisfied. We
will furthermore show that such an induction strategy can lead
to a very large (three orders of magnitude) increase in the
product amount, for realistic parameter values. Surprisingly, a
crucial ingredient of this large increase is a loss of substrate
through fast non-specific degradation. Finally, we will discuss
biological applications of the mechanism analysed here.

2. Results and discussion

2.1. Analytical results

In this subsection we analytically study induction of the system
defined by the reaction scheme in figure 1. It is useful to
observe the following three cases: (i) increasing the substrate
to product processing rate (k), while keeping the substrate
production rate (φ) constant; (ii) increasing φ while keeping k
constant and (iii) increasing both φ and k. It is straightforward
to see that an increase of k (the first case) leads to a decrease
of the substrate and an increase of the product. On the other
hand, an increase of φ (the second case) leads to an increase
of both the substrate and the product. Finally, the third case
(an increase of both k and φ) is a mix of the previous two
cases; therefore, through an appropriate balance between the
increase of k and φ, one can obtain a larger amount of product,
without increasing the substrate amount. In the analysis below,
we will concentrate on this case (the increase of both k and
φ) and infer an optimal induction strategy through which one
can obtain a large product amount, while keeping the substrate
amount at low levels.

Note that processing of the substrate to product in figure 1
involves an enzyme catalysis and should, in principle, be
presented by the Michaelis–Menten law. In the limit of
the small substrate concentrations (i.e. when the substrate
concentration is much smaller than the Michaelis–Menten
constant (Km)), the substrate to product processing reduces to
first order kinetics. Since we here impose that the (potentially
toxic) substrate has to be kept at low concentrations, we model
the mechanism in figure 1 by first order kinetics; e.g. note
that ∼10 substrate molecules corresponds to ∼10nM substrate
concentration for bacterial cell, which is much smaller than
the typical values of Michaelis–Menten constants. However,

at the end of this subsection, we will analyse the mechanism
through Michaelis–Menten law, in order to account for the
possibility of very strong enzyme binding (low Km), and show
that the optimization strategy is robust with respect to the
models/approximations used.

Equations that determine the kinetics of the system, upon
its induction, are given in the appendix. For the first order
kinetics, it is straightforward to show that the relative change
in the steady-state product and substrate amounts is given by
(see appendix A):

[p]′

[p]
=

λs
k + 1
λs
k′ + 1

φ′

φ
,

[s]′

[s]
= λs + k

λs + k′
φ′

φ
. (1)

The terms in equation (1) are defined in the previous section
and in figure 1. The ‘primes’ correspond to the steady state
values upon the system induction; e.g. k and k′ denote,
respectively, the substrate processing rates before and after
the system induction.

Note that the properties of the system, qualitatively
discussed above, can be directly inferred from equation (1).
Furthermore, if k′ becomes much larger than λs, a further
increase in k′ does not lead to an additional relative increase
in the product amount (i.e. [p]′/[p] → λs/k + 1, for k′ � λs).
Such saturation arises since, when k′ � λs, almost all of the
generated substrate is processed to the product, and therefore
a further increase in k′ does not have an additional effect on
the product gain.

Next we consider an optimal method for the system
induction through the joint increase of φ and k; note that
such a method has to satisfy the three conditions stated in the
introduction. From equation (1) it follows that the condition
[s]′/[s] � 1 leads to

φ′

φ
� λs + k′

λs + k
. (2)

Since [p]′/[p] is directly proportional to φ′/φ (see
equation (1)), in order to achieve the maximal [p]′/[p], one
must use the maximal φ′/φ, that still satisfies equation (2).
Such a value of φ′/φ, leads to a simple expression for the
maximal value of the product increase ([p]′/[p])max = k′/k.
That is, no matter how we change φ and k, the maximal value of
the product increase is determined by only the relative increase
in the processing rate, as long as the substrate amount does not
increase. However, note that only increasing the processing
rate is not sufficient to achieve this maximal value, i.e. the
production rate also has to be increased according to the
maximal value allowed by equation (2).

Therefore, the optimal induction strategy requires an as
large as possible relative increase in the processing rate k′/k.
However, the ratio of k′/k is, in reality, constrained from above,
i.e. it is determined by the maximal relative increase in the
amount of the enzyme that catalyses processing of the substrate
to the product. Consequently, for an optimal system induction,
one should (i) increase k′/k as much as is realistically possible,
and (ii) for such k′ value, increase φ′/φ for the maximal value
that is allowed by equation (2). This will result in a relative
increase of the steady state product amount that is equal to
k′/k, and in an absence of an increase of the substrate amount.
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Next we investigate how changes in the substrate
and the product stability influence product generation. The
condition that an initial (steady state) substrate amount has to
be comparable to the initial product amount, leads to k ∼ λp

(see appendix A). Furthermore, if we label the maximal relative
increase in the transcript processing rate as (k′/k)max = M,
from equation (2) and from k ∼ λp, we obtain that the relative
increase of the substrate generation rate, which leads to the
optimal (maximal) product generation, is approximately given
by

φ′

φ
∼ 1 + M − 1

λs
λp

+ 1
. (3)

From the above equation, we see that a slower substrate decay
λs requires a larger relative increase in the substrate generation
rate. Due to this, we obtain an unexpected result that a larger
(nonspecific) loss of the substrate leads to a more efficient
system induction.

Next we consider how the analysis changes when the
substrate to product processing is modelled by the Michaelis–
Menten law. In appendix B, we show that the strategy for
the optimal system induction remains unchanged when the
Michaelis–Menten law is used. That is, the maximal value
of the relative product increase is still determined by the
increase in the substrate processing rate ([p]′/[p])max = k′/k.
Since a large increase in the processing rate is required for
large product generation, we further assume that k′ reaches the
saturation regime (i.e. k′ � λs).

We next derive the extent of the relative φ increase, which
is necessary to achieve the maximal product increase (i.e. the
equivalent of the equation (2) for the Michaelis–Menten law).
In the derivation, we assume that λs � k, since we previously
obtained that a large product increase requires λs � λp ∼ k.
Consequently, under approximations k′ � λs � k, we obtain
(see appendix B):

φ′

φ
≈ 1 + k′

λs

1

s/Km + 1
. (4)

Note that, under the same approximations, equation (2) reduces
to φ′/φ ≈ k′/λs. Therefore, Michaelis–Menten law requires a
smaller increase of the production rate necessary to obtain the
maximal product gain, i.e. leads to an even more efficient
induction. Consequently, the derived induction strategy is
robust with respect to the used model/assumptions.

2.2. Numerical analysis

In this subsection, we will numerically investigate the
induction of the system represented by figure 1. We will
use first order kinetics in the numerical analysis, since it
corresponds to the relevant physical limit (low substrate
concentration), and since we have shown that using the
Michaelis–Menten law does not affect the induction strategy.
We will simulate the system both deterministically and
stochastically3; this will allow us to also visualize intrinsic

3 Note that stochastic simulations can lead to a significantly larger estimate of
the substrate amounts, when biomolecular interactions are taken into account,
and when the enzyme is saturated [7]. We do not analyse such a possibility
here, since the relevant regime is the one in which the substrate (rather than
the enzyme) is saturated.
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Figure 2. Saturation in the product amounts. The reaction scheme in
figure 1 is simulated both deterministically (magenta dashed line)
and stochastically (full blue curves) through the Gillespie stochastic
simulation algorithm; ten stochastic trajectories are shown. The
substrate and the product decay rates are respectively, λs = 1 and
λp = 1/100 min−1. Initial substrate generation and processing rates
(φ and k) are adjusted so that the (deterministic) steady state values
of the substrate and the product are [s] = 20, [p] = 20. We then
increase the substrate processing rate for (A) 10 times, (B)
100 times, (C) 1000 times and (D) 10 000 times. The figure shows
that an increase of only k can lead to a large (two orders of
magnitude) increase of the product amount; however, the product
level stops increasing when k becomes sufficiently large (which we
call saturation).

fluctuations for the small number of the substrate molecules.
We will first analyse the case of fast substrate and slow product
decay (λs = 1 min−1 and λp = 1/100 min−1), and then
investigate the effects of increasing the substrate stability.

In figure 2, we analyse how the product amount [p]
increases when only the processing rate k is increased.
Consequently, we consider an increase of k for 10 times
(figure 2(A)), 100 times (figure 2(B)), 1000 times (figure 2(C))
and 10 000 times (figure 2(D))4. We see that, as k reaches
1000, the steady state value of the generated product reaches
saturation, i.e. stops increasing with a further increase in k. We
note that this observation is in accordance with the analysis
presented in the previous subsection; that is (i) saturation is
achieved when k′ � λs, which corresponds to k′/k ∼ 1000 for
the numerical values used here, and (ii) the saturation level (i.e.
maximum) for the relative product increase is approximately
equal to λs/k (i.e. [p]′/[p] ∼ 100, for the numerical values
used here). Therefore, in order to relieve such saturation, the
production rate has to be increased as well.

The joint increase of k and φ is analysed in figure 3. For
both panels, k is increased 1000 times, which corresponds
to the value for which saturation in the steady state amount
of the product [p] is observed. In figure 3(A), φ is increased
ten times, which leads to the desired behaviour of the system:

4 Note that the stochastic and the deterministic means in figures 2–4
correspond to each other, as expected [8, 9].
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Figure 3. Abolishing saturation in the product amount. The decay
rates (λs and λp) and the initial conditions are the same as in figure 2.
In both (A) and (B), the substrate processing rate k is increased
1000 times, while the substrate generation rate φ is (A) increased
10 times and (B) increased 100 times. The figure shows that
saturation, which is exhibited when only k is increased, is relieved
when k and φ are both increased; however, too large an increase in φ
leads to an (undesired) increase in the substrate amounts.

saturation of the product [p], shown in figure 2(C) is abolished
(i.e. the amount of the product is increased for an additional
order of magnitude), while the amount of the substrate [s] does
not increase. Note that, for the numerical values used here,
this increase in φ approximately corresponds to the optimal
value ((φ′/φ)max ∼ k′/λs—see section 2.1). Consequently,
the relative increase of the steady state product amount
(approximately 1000) becomes equal to the maximal value
(k′/k = 1000).

In figure 3(B), φ is increased for an additional order of
magnitude (100 times), which however leads to a substantial
increase in the substrate amount [s]. Such an increase is a
consequence of the fact that equation (2) is no longer valid.
We therefore conclude that (for the numerical values used
here) the optimal strategy for a large product gain, that does
not result in the substrate increase, is a joint 1000-fold increase
of k and 10-fold increase in φ; this strategy leads to the product
increasing by k′/k (in our case 1000 times).

One should note that the parameters leading to the
three orders in magnitude increase of the product amount
in figure 3(A) are biologically realistic: λs = 1 and λp =
1/100 min−1 are well within the degradation rates for both
proteins and transcripts, whose half lives are in a range of
minutes to hours/days. A three orders in magnitude increase
in the processing rate k may also be achieved, since it is within
a realistic range of the activation of a promoter transcribing the
enzyme gene. Finally, it is evident that an order of magnitude
increase in the substrate generation rate can also be achieved.

Moreover, a simple mechanism in figure 1 matches with
a current minimal model of transcript processing [13] in a
recently discovered E. coli immune system CRISPR/Cas
(clustered regularly interspaced short palindromic
repeats/CRISPR associated sequences) [10–12]. Another
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Figure 4. Change of substrate stability. The panel arrangement, the
initial substrate and product amounts, and the product stability are
the same as in figure 3. The substrate stability is increased, so that it
becomes equal to the product stability (i.e. λs = λp = 1/100 min−1).
(A) The increase in k and φ is the same as in figure 3(A) (k is
increased 1000 times and φ 10 times), (B) φ is now increased for an
additional two orders of magnitude (i.e. both k and φ are increased
1000 times). The figure shows that, if the substrate stability is
increased, the increase in the parameter values has to be much larger
in order to achieve the same product gain.

argument that the parameters in figure 3(A) are biologically
realistic, is that they also roughly match those of the E. coli
CRISR/Cas system. That is, the half lives of pre-crRNA
(substrate) and crRNA (product) are, respectively, on the order
of minutes and hours [13]; furthermore, during (artificial)
system induction the processing rate of the enzyme that
catalysis pre-crRNA to crRNA processing, is increased for
about three orders of magnitude [13], which corresponds to
the magnitude of k increase in figure 3(A).

Next we consider the extent of the intrinsic fluctuations
in the steady state substrate amounts, for both the uninduced
system and for the optimal induction parameters (figure 3(A));
for a toxic substrate, it may be important that these fluctuations
are reasonably low. To obtain sufficiently large statistics, we
perform 1000 stochastic simulations for both the uninduced
and the optimally induced system, and record the number
of molecules once the steady states are established. The
obtained 95% confidence limits correspond to (20 ± 9)
molecules for the uninduced system, and (19 ± 8) molecules
for the optimal induction. We therefore conclude that intrinsic
substrate fluctuations are kept at reasonably low levels—both
before and after the induction—which is desirable for the case
when the substrate molecules are poisonous above a certain
threshold.

In the analysis above, we showed that fast substrate decay
(λs = 1 min−1) and slow product decay (λp = 1/100 min−1)
lead to the desired system behaviour (a large product increase).
In figure 4, we analyse what happens if the substrate stability
is increased, so that it becomes equal to the product stability
(λs = λp = 1/100 min−1). In figure 4(A), we increase k and
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Figure 5. Modifying endogenous biosynthetic pathway. The
substrate is generated from species A with rate φ, and processed to
species B with rate λs (the notation is used to facilitate a comparison
with figure 1). The substrate s, and species A and B are part of an
endogenous biosynthetic pathway. As a synthetic addition to the
pathway, product p (with decay rate λp) is processed from substrate
[s] with rate k.

φ for the same amount as in figure 3(A) (k for 1000 fold and φ

for 10 fold), but observe a much smaller increase in the steady
state product amount, compared to the case in figure 3(A). In
figure 4(B), we increase both k and φ 1000 fold (in accordance
with the optimal induction for such a substrate stability), which
then leads to the same product increase as in figure 3(A).
Therefore, we obtain a counter-intuitive result that, in the case
of larger substrate stability, one needs a much larger increase
in the substrate production rate φ to achieve the same (optimal)
product increase. This result is consistent with the analytical
results in the previous subsection.

2.3. Modifying endogenous biosynthetic pathways

We here analysed the problem from the perspective of the
traditional ‘from scratch’ approach to synthetic biology, where
pathways are designed to function as independently as possible
from the underlying cellular systems. On the other hand,
there has recently been an approach where synthetic gene
circuits are closely integrated with endogenous processes.
Within such an approach, it is ideal to minimally perturb
an endogenous pathway, while still producing the desired
outcome [1].

It is straightforward to see that the system defined here
naturally fits within such an approach, as indicated by figure 5.
The substrate s can be a part of any biosynthetic pathway, as
long as it is efficiently converted to the downstream chemical
((B) in figure 5). That is, the unspecific decay rate of the
substrate λs in our analysis (which should be sufficiently large)
takes the role of the rate of conversion to the downstream
chemical. Similarly, the flux through the upstream part of
the pathway ((A) in figure 5), takes the role of the substrate
production rate φ in figure 1.

Processing of the substrate to the desired product with
rate k can then be included as a synthetic ‘add-on’ to the
endogenous biosynthetic pathway. Similarly, as in figure 1, the
rates k and φ have to be regulated in order to allow induction of
the product synthesis. The optimal induction strategy derived
here allows for increasing the product to a very large amount,
with a much smaller increase of the flux through the upstream
part of the pathway. Furthermore, we showed that the optimal
induction strategy corresponds to the case when the substrate
amount is unchanged, which allows the generation of large
product amounts without perturbing the downstream reactions
in the endogenous pathway. Therefore, we expect that the

system analysed here will find a large number of applications
in the future, as either a stand alone biosynthetic pathway, or
as a synthetic modification of an already existing endogenous
pathway.

3. Conclusion and outlook

We proposed here a simple mechanism which allows a
large (three orders of magnitude) increase of the product
amount, without increasing the substrate amount. Surprisingly,
a crucial element of this large increase is a fast non-specific
degradation of the substrate molecules; this establishes that
non-specific loss of substrate may, counter-intuitively, enhance
large product generation. We pointed to the CRISPR/Cas
system in E. coli, as a putative example of the pathway
proposed here. Interestingly, the parameters optimized here
roughly match those measured for the CRISPR/Cas system.
The significance of this finding has yet to be understood, since
the mechanism of the natural CRISPR/Cas system induction
is the focus of current research. We finally pointed out that
the scheme employed here can be used not only as a stand-
alone pathway, but also as a synthetic modification of an
endogenous pathway. We therefore expect that the simple
system analysed here will provide understanding necessary for
both analysing and modifying the existing, and constructing
novel biosynthetic pathways.
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Appendix A. Kinetic equations—first order kinetics

By using the first order kinetics, we obtain the kinetic equations
that describe the set of reactions shown in figure 1:

d[s]

dt
= φ − λs[s] − k[s] (A.1)

d[p]

dt
= −λp[p] + k[s]. (A.2)

The notation used in the above equations is the same as
in figure 1. In steady state we have that d[s]/dt = 0 and
d[p]/dt = 0, so:

0 = φ − λs[s] − k[s] (A.3)

0 = −λp[p] + k[s]. (A.4)

When the system is induced (k and φ are increased to k′ and
φ′), the equations become:

0 = φ′ − λs[s]′ − k′[s]′ (A.5)

5
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0 = −λp[p]′ + k′[s]′. (A.6)

To derive equation (1) in section 2, we express [p] from
equations (A.3) and (A.4), [p]′ from equations (A.5) and (A.6),
[s] from equation (A.3) and [s]′ from equation (A.5). To derive
equation (2), we use that [s]′/[s], given by equation (1) has to
be smaller than 1.

Appendix B. Kinetic equations—Michaelis–Menten
law

By using the Michaelis–Menten law, the kinetic equations that
describe the set of reactions shown in figure 1 become (Km is
Michaelis–Menten constant):

d[s]

dt
= φ − λs[s] − k

[s]

[s]/Km + 1
(B.1)

d[p]

dt
= −λp[p] + k

[s]

[s]/Km + 1
. (B.2)

In steady state, d[s]/dt = 0 and d[p]/dt = 0, leading to:

0 = φ − λs[s] − k
[s]

[s]/Km + 1
(B.3)

0 = −λp[p] + k
[s]

[s]/Km + 1
. (B.4)

When the system is induced (k and φ are increased to k′ and
φ′), the equations become:

0 = φ′ − λs[s]′ − k′ [s]′

[s]′/Km + 1
(B.5)

0 = −λp[p]′ + k′ [s]′

[s]′/Km + 1
. (B.6)

By using equations (B.4) and (B.6), we obtain:

[p]′

[p]
= k′

k

[s]′

[s]

[s]/Km + 1

[s]′/Km + 1
. (B.7)

Note that [p]′/[p] increases with the increase in [s]′/[s]. It
is therefore evident that the maximal relative increase in the
product (without increasing the substrate) is achieved when
[s]′ = [s], leading to ([p]′/[p])max = k′/k.

We next derive for how much φ needs to increase to
achieve a maximal increase in the product, without increasing
the substrate. By using the approximation k � λs � k′ (see
section 2.1), from equation (B.3) it is straightforward to obtain
[s] ≈ φ/λs. Since the maximal increase in the product is

achieved when the substrate remains unchanged, we substitute
this value into equation (B.5) to obtain

φ′

φ
≈ 1 + k′

λs

1

[s]/Km + 1
. (B.8)
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