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Reliable predictions for jet quenching in ultra-relativistic heavy ion collisions require accurate computa-
tion of radiative energy loss. While all available energy loss formalisms assume zero magnetic mass – in
accordance with the one-loop perturbative calculations – different non-perturbative approaches report a
non-zero magnetic mass at RHIC and LHC. We here generalize a recently developed energy loss formalism
in a realistic finite size QCD medium, to consistently include a possibility for existence of non-zero
magnetic screening. We also present how the inclusion of finite magnetic mass changes the energy loss
results. Our analysis suggests a fundamental constraint on magnetic to electric mass ratio.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Jet suppression is considered to be a powerful tool to study the
properties of a QCD medium created in ultra-relativistic heavy ion
collisions [1–3]. The suppression results from the energy loss of
high energy partons moving through the plasma [4]. Therefore, re-
liable computations of jet energy loss are essential for the reliable
predictions of jet suppression. Consequently, a number of differ-
ent approaches for calculating jet energy loss were developed [5,6,
9–16]. In particular, in [5,6], a theoretical formalism for the calcu-
lation of the first order in opacity radiative energy loss in a dynam-
ical QCD medium was developed (see also a viewpoint in [17]).
That study models radiative energy loss for all types of quarks in a
realistic finite size QCD medium with dynamical constituents, there-
fore removing a major approximation of static scattering centers
present in previous calculations (see e.g. [9–15]).

While different non-perturbative approaches [18–21] suggest a
non-zero magnetic mass at RHIC and LHC, all energy loss cal-
culations up to now [5,6,9–16] assume the absence of magnetic
screening. In particular, the dynamical energy loss formalism [5,6]
is based on HTL perturbative QCD, which requires zero magnetic
mass. The goal of this Letter is to bridge the difference between
non-perturbative approaches and energy loss calculations with re-
spect to magnetic screening, and to consistently include magnetic
mass in the dynamical energy loss formalism.

We will here consider magnetic mass corrections to the first or-
der in opacity energy loss. Since recent studies [7,8] suggest that
higher order corrections to the energy loss are also relevant, an im-
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portant extension of the work presented here would include gen-
eralizing the magnetic mass corrections to higher orders in opacity
energy loss calculations.

2. Theoretical analysis

In [5,6], we used finite temperature field theory (HTL approx-
imation) and calculated the radiative energy loss in a finite size
dynamical QCD medium. The obtained expression for the energy
loss is given by
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In Eqs. (2.1) and (2.2), L is the length of the finite size dynam-
ical QCD medium and E is the jet energy. k is transverse momen-
tum of radiated gluon, while q is transverse momentum of the ex-

changed (virtual) gluon. αs = g2

4π is coupling constant and C R = 4
3 .

v(q) is the effective cross section in dynamical QCD medium and
λ−1

dyn ≡ C2(G)αs T = 3αs T (C2(G) = 3) is called “dynamical mean

free path” (see [22,23]). χ ≡ M2x2 + m2
g , where x is the longitu-

dinal momentum fraction of the heavy quark carried away by the
emitted gluon, M is the mass of the heavy quark, mg = μE/

√
2

is the effective mass for gluons with hard momenta k > T [24],
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and μE is the Debye mass. We assume constant coupling g . Fur-
thermore, we note that in Eq. (2.1) effective cross section v(q)

represents the interaction between the jet and exchanged gluon,
while f (k,q, x) represents the interaction between the jet and ra-
diated gluon [5,6].

The goal of this section is to start from the above expression,
and generalize it to include the existence of non-zero magnetic

mass [18–21]. We first note that the constant C Rαs
π

L
λdyn

= 3 C Rα2
s

π T L

in Eq. (2.1) does not change with the introduction of magnetic
mass: note that the coupling constant αs comes from vertices in-
volving highly energetic jets, while temperature T comes from the
Bose–Einstein factor in the soft approximation [23,25]. Therefore,
only the integrand in Eq. (2.1) can be modified with the introduc-
tion of magnetic mass.

To proceed, we note that the inclusion of magnetic mass mod-
ifies the gluon self energy, and therefore our goal is to study how
modified self energy of radiated and exchanged gluons change the
energy loss result. Furthermore, from [5], it is straightforward to
show that non-zero magnetic mass does not alter the factorization
(v(q) f (k,q, x)) in the integrand of Eq. (2.1), due to the fact that
the factorization does not depend on specific form of self energy.
Since v(q) depends only on the exchanged gluon self energy, while
f (k,q, x) depends only on a radiative gluon self energy, we below
separately study how the inclusion of magnetic mass will modify
v(q) and f (k,q, x).

2.1. Modification of the effective cross section due to magnetic screening

The effective cross section v(q) can be written in the following
form

v(q) = v L(q) − vT (q), (2.3)

where v T (q) (v L(q)) is transverse (longitudinal) contribution to
the effective cross section, given by [5,25,26]

vT ,L(q) = 1

q2 + ReΠT ,L(∞)
− 1

q2 + ReΠT ,L(0)
, (2.4)

where ΠT and ΠL are gluon self energies. While in [5,6] the
derivation of the effective cross section was made through a hard
thermal loop for the self-energy Π , one should note that the cross
section does not depend on specific form of gluon self energy [25].
That is, the expression is valid for any self-energy satisfying the
following assumptions [25]:

1. Π depends only on x ≡ k0/k,
2. ImΠ(x = 0) = 0,
3. ImΠ(x) = 0 if x � 1,
4. ReΠ(x) � 0 if x � 1,

which are reasonable approximations for any system of well de-
fined quasiparticles.

Therefore, we see that the result given by Eq. (2.4) depends
only on four numbers: ReΠT ,L(∞) and ReΠT ,L(0); due to this, we
don’t need to know the full gluon propagator to generalize the ef-
fective cross section to the case of finite magnetic screening. The
first two numbers are the masses of the longitudinal and the trans-
verse gluons at zero momentum (so-called plasmon masses). These
are shown to be equal due to Slavnor–Taylor identities [27–29],
which physically means that there is no way to distinguish trans-
verse and longitudinal modes for a particle at rest [25]. Therefore,
we need only to introduce one plasmon mass:

Re ΠT (∞) = Re ΠL(∞) ≡ μ2
pl. (2.5)

The second two quantities (ReΠT ,L(0)) are squares of the screen-
ing masses for the transverse and longitudinal static gluon ex-
changes. The longitudinal (electric) screening mass is the familiar
Debye mass:

μ2
E ≡ Re ΠL(0). (2.6)

In the HTL approximation, there is no screening for the transverse
static gluons, but this is not expected to hold generally. The corre-
sponding screening mass is the magnetic mass, and is denoted

μ2
M ≡ ReΠT (0). (2.7)

The general expressions for the transverse and longitudinal contri-
butions to the effective cross sections v T ,L(q) then become

v L,T (q) = 1

(q2 + μ2
pl)

− 1

(q2 + μ2
E,M)

. (2.8)

After replacing the expressions for v L,T (q) from Eq. (2.8) into
Eq. (2.3), we finally obtain the expression for the effective cross
section in the case of non-zero magnetic mass:

v(q) = μ2
E − μ2

M

(q2 + μ2
M)(q2 + μ2

E)
. (2.9)

Note that dependence on the plasmon mass drops out of v(q)

(Eq. (2.9)). This seems reasonable given that v(q) involves only
space-like gluon exchanges (see [5,6,23]), while the plasmon mass
is a property of time-like gluons [25]. Therefore, we only need to
know the two screening masses μE and μM , in order to generalize
the effective cross section to non-zero magnetic mass.

2.2. Modification of f (k,q, x) due to magnetic screening

As we discussed above, the introduction of the magnetic mass
leads to the modification of the exchanged and radiated gluon self
energy. In this subsection, we study how the introduction of the
magnetic mass in the radiated gluon self energy modifies the ra-
diative energy loss.

To proceed with this study, we note that all radiative energy
loss calculations [5,9–16] are performed by assuming validity of
the soft gluon (ω � E) and soft rescattering (ω � |k| ∼ |q| ∼
q0,qz) approximations. Within these approximations, we showed
that in the finite temperature QCD medium radiated gluons have
similar dispersion relation as in the vacuum, with the difference
that the gluons now acquire a “mass” [24]. We also showed that
the gluon mass in the medium is approximately equal to the value
of gluon self energy at x = 1 [24,30] (so-called asymptotic mass
m∞ = √

ΠT (x = 1)).
Therefore, analogously to the previous section, we see that the

dependence of the f (k,q, x) on gluon self energy reduces to just
a single number: ΠT (x = 1), which is defined as a square of gluon
mass mg . Due to this, instead of knowing the full gluon propagator,
we only need to know how mg changes in order to obtain how
f (k,q, x) is modified in the case of non-zero magnetic mass.

In principle, gluon mass may change with the introduction of
non-zero magnetic screening, but (to our knowledge) no study up
to now addressed how non-perturbative calculations would mod-
ify the gluon asymptotic mass. Consequently, our approach in the
next section is to introduce an ansatz in order to numerically in-
vestigate how perturbations of mg , for a magnitude corresponding
to magnetic mass, change radiative energy loss results.
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Fig. 1. The percentage difference between energy losses for gluon mass Mg = μE/
√

2 and Mg =
√

μ2
E +μ2

M
2 is shown as a function of initial jet energy. Full, dashed and

dot-dashed curves correspond to light, charm and bottom quark respectively. For left (right) panel, we assume a medium of temperature T = 225 (T = 400) MeV, which
corresponds to RHIC (LHC) conditions.

Fig. 2. Fractional radiative energy loss is shown as a function of magnetic to electric mass ratio. Assumed path length is L = 5 fm and initial jet energy is 10 (25) GeV
for a left (right) panel. Full, dashed and dot-dashed curves correspond to light, charm and bottom quark respectively. Note that for both panels, we assume a medium of
temperature T = 225 MeV (“RHIC conditions”).

2.3. Modification of the energy loss expression due to magnetic
screening

After replacing the effective cross section v(q) (see Eq. (2.9))
into Eq. (2.1), the total energy loss becomes

�Erad

E
= C Rαs

π

L

λdyn

(
μ2

E − μ2
M

) ∫
dx

d2k

π

d2q

π

× 1

(q2 + μ2
M)(q2 + μ2

E)
f (k,q, x), (2.10)

where f (k,q, x) is given by Eq. (2.2). Note that in Eq. (2.2), χ ≡
M2x2 + M2

g , where the gluon mass Mg can now be different from

mg = μE/
√

2 (see the previous subsection).

2.4. A constraint on the magnetic mass range

We first discuss an interesting observation, that follows directly
from Eq. (2.10): Since the integrand in Eq. (2.10) is positive defi-
nite, if magnetic mass becomes larger than electric mass, the net
energy loss becomes negative. Therefore, if magnetic mass is larger
than electric mass, the quark jet would, overall, start to gain (in-
stead of lose) energy in this type of plasma. The origin for this
effect can be traced from Eq. (2.8): if the magnetic mass is larger
than electric mass, the energy gain from magnetic contribution be-
comes so large, that it, overall, leads to the total energy gain of
the jet. One should note that such a gain would involve transfer
of energy of disordered motion of plasma constituents, to energy

of ordered jet motion. Such transfer of “low” to “high” quality en-
ergy would be in a violation of the second law of thermodynamics.
From this may follow that it is impossible to create a plasma with
magnetic mass larger than electric, which places a fundamental
limit on magnetic mass range. Indeed, in an agreement with this
limit, various non-perturbative approaches [18–21] suggest that, at
RHIC and LHC, 0.4 < μM/μE < 0.6. The other possibility is that
pQCD cannot be applied for cases where magnetic mass is larger
than electric, since calculations in this regime lead to apparent
physical inconsistencies.

3. Numerical results

In this section, we numerically study how the inclusion of
non-zero magnetic mass modifies the energy loss results. To ad-
dress this, we consider a quark–gluon plasma of temperature T =
225 MeV, with n f = 2.5 effective light quark flavors and strong
interaction strength αs = 0.3, as representative of average con-
ditions encountered in Au + Au collisions at RHIC. For the light
quark jets we assume that their mass is dominated by the thermal
mass M = μ/

√
6, where μ = gT

√
1+N f /6 ≈ 0.5 GeV is the Debye

screening mass. The charm mass is taken to be M = 1.2 GeV, and
for the bottom mass we use M = 4.75 GeV. To simulate (average)
conditions in Pb+Pb collisions at the LHC, we use the temperature
of the medium of T = 400 MeV.

We first investigate how possible changes of gluon mass due to
non-zero magnetic screening may change radiative energy loss (see
the previous section). To investigate this, we introduce an ansatz
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Fig. 3. Fractional radiative energy loss is shown as a function of magnetic to electric mass ratio. Assumed path length is L = 5 fm and initial jet energy is 50 (500) GeV
for a left (right) panel. Full, dashed and dot-dashed curves correspond to light, charm and bottom quark respectively. Note that for both panels, we assume a medium of
temperature T = 400 MeV (“LHC conditions”).

Fig. 4. Fractional radiative energy loss for an assumed path length L = 5 fm as a function of momentum for charm quarks. Left (right) panel corresponds to RHIC (LHC)
conditions. Full curve corresponds to the case when magnetic mass is zero. Gray band corresponds to the energy loss when magnetic mass is non-zero (i.e. 0.4 < μM/μE <

0.6). Upper (lower) boundary of the band corresponds to the case μM/μE = 0.4 (μM/μE = 0.6).

that both electric and magnetic masses equally contribute to gluon

self energy at x = 1 (i.e. Mg =
√

μ2
E +μ2

M
2 ). With this ansatz, which

changes the gluon mass for a magnitude comparable to magnetic
mass, we obtain a small (less than 10%) change in radiative energy
loss for RHIC and negligible change for LHC case (see Fig. 1)). (The
only exception is when the initial jet energy E � 10GeV, where
soft gluon-soft rescattering approximation becomes less valid.) For
simplicity, we will therefore further assume that the gluon mass
of radiated gluon remains the same as in [5,24], i.e. that Mg =
μE/

√
2. Consequently, in the rest of this section, we numerically

study how the inclusion of magnetic mass into the effective cross
section modifies the energy loss results compared to the results
presented in [5].

Energy loss dependence on the magnetic mass is shown in
Figs. 2 and 3 for, respectively, RHIC and LHC case. For both experi-
ments, the results are shown for two characteristic energies, lower
and higher. As expected, we see that at RHIC conditions, charm and
light quarks show similar energy loss dependence, while energy
loss dependence for bottom quark is significantly lower. On the
other hand, for LHC conditions, we see that, as the jet energy in-
creases, the energy loss dependences for all quarks approach each
other. We also see that the energy loss decreases with the increase
in magnetic mass. Importantly, when magnetic masses becomes
larger than electric mass, the net energy loss becomes negative, as
discussed in the previous section. In Fig. 4, we show momentum
dependence of fractional energy loss, where we concentrate on the
range 0.4 < μM/μE < 0.6 (the gray band), as suggested by various
non-perturbative approaches [18–21]; we see that finite magnetic

Fig. 5. Fractional radiative energy loss for charm quark as a function of magnetic to
electric mass ratio is shown by full curve. Dot-dashed curve shows what would be
the energy loss if the magnetic mass correction is only in the denominator. Dashed
curve shows the energy loss when μM = 0 and is presented here for comparison.
Assumed path length is L = 5 fm and initial jet energy is 25 GeV. Note that for both
panels, we assume a medium of temperature T = 225 MeV (“RHIC conditions”).

mass reduces the energy loss in dynamical QCD medium by 25%–
50%.

It is interesting to note that, contrary to what one may naively
expect, majority of the energy loss decrease does not come from
the introduction of magnetic screening in the denominator of the
effective cross section. To demonstrate this, in Fig. 5 dot-dashed
line shows what would be the energy loss if the magnetic mass
was only “by-hand” introduced in the denominator of the effective
cross section, while dashed curve shows the result when magnetic
mass is introduced both in the numerator and denominator (see
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Eq. (2.10)). From the figure, we see that majority of the decrease in
the energy loss actually comes from the presence of the magnetic
mass in the numerator of the energy loss expression. For example,
for the ratio μM/μE = 0.5, 25% decrease in the energy loss comes
from the presence of the magnetic mass in the numerator, while
only 14% decrease comes from the presence of magnetic screening
in the denominator of the effective cross section. The reason be-
hind this is that introduction of magnetic screening in the denom-
inator of effective cross section does not regulate the logarithmic
divergence in Eq. (2.10). That is, the divergence is already natu-
rally regulated in Eq. (2.1) by taking all the relevant diagrams into
account [5,6]. On the other hand, presence of the magnetic mass
in the numerator leads to a subtraction of the squares of electric
and magnetic masses. Since, according to the non-perturbative ap-
proaches [18–21], the two masses are comparable to each other,
this will lead to a notable reduction of the energy loss relative to
perturbative HTL (μM = 0) result.

Finally, we point that several studies [18,20,21,31] suggest that
the electric mass is considerably larger than the leading order
pQCD result used in this study. While larger electric mass value
would change the overall energy loss results, we note that it would
not change the qualitative results presented in this Letter. This is
because the electric to magnetic mass ratio is calculated to be be-
tween 0.4 and 0.6 [18–21], so that larger electric mass also implies
proportionally larger magnetic mass (i.e. the relative importance of
magnetic mass remains the same).

4. Summary

This Letter generalizes dynamical energy loss formalism to non-
zero magnetic screening. While introduction of magnetic mass
into any perturbative calculation is inherently phenomenological,
the presented inclusion of the effects of modified gluon self en-
ergy into the radiative energy loss formalism is valid as long as a
well defined quasiparticle system is assumed. Analysis of the finite
magnetic mass effects suggests a constraint that it is impossible to
create a plasma with magnetic mass larger than electric. Results
presented in this Letter allow including non-zero magnetic screen-
ing into jet suppression calculations (for example, see our recent
application [32] to jet suppression at 200 GeV Au + Au collisions
at RHIC), and open a possibility for more accurate mapping of QGP
properties.
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