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Abstract
SELEX (systematic evolution of ligands by exponential enrichment) is an experimental
procedure that allows the extraction, from an initially random pool of DNA, of those oligomers
with high affinity for a given DNA-binding protein. We address what is a suitable
experimental and computational procedure to infer parameters of transcription factor–DNA
interaction from SELEX experiments. To answer this, we use a biophysical model of
transcription factor–DNA interactions to quantitatively model SELEX. We show that a
standard procedure is unsuitable for obtaining accurate interaction parameters. However,
we theoretically show that a modified experiment in which chemical potential is fixed
through different rounds of the experiment allows robust generation of an appropriate
dataset. Based on our quantitative model, we propose a novel bioinformatic method of data
analysis for such a modified experiment and apply it to extract the interaction parameters for a
mammalian transcription factor CTF/NFI. From a practical point of view, our method results
in a significantly improved false positive/false negative trade-off, as compared to both the
standard information theory based method and a widely used empirically formulated
procedure.

1. Introduction

One of the most important issues in molecular biology
is to understand regulatory mechanisms that control gene
expression. Gene expression is often regulated by proteins,
called transcription factors (TFs), which bind to short (6 to 20
base pairs) segments of DNA [1]. To understand a regulatory
system one needs a detailed knowledge of both TFs and their
binding sites in a genome. Binding sites of a given TF share
a common sequence pattern [2], which is often represented
by a consensus sequence. However, TF binding sites are
often highly degenerate, so it is not possible to reliably detect
TF binding sites in a genome by using just the consensus
sequence [3]. As an alternative, position-weight matrices
(PWMs) [2, 4, 5] have been used to search for TF binding
sites, with demonstrable advantage over consensus sequence
based methods [3].

The most widely used method to construct a PWM
originates from information-theoretic considerations [5, 6].

To distinguish such weight matrices from those constructed
by other methods, we will further call them information-
theoretic weight matrices (see also [7]). To build these
weight matrices, one usually starts from a known collection
of aligned binding sites and calculates the corresponding
matrix elements as the logarithm of the ratio of probability
to observe a given base at a given position in a collection of
binding sites, compared to the probability of observing the
base in the genome as a whole [3]. However, despite the
obvious advantages of using such PWMs over the consensus
sequence, the majority of PWMs provide a low level of both
sensitivity and specificity [8]. In particular, there tend to be a
large number of false positives in searches using most PWMs
[3, 8, 9].

In general, two problems may lead to the low sensitivity
and specificity of PWMs. First, the information-theoretic
method may not be the most appropriate one. It does
not properly incorporate saturation in binding probability, as
shown by [7], and an alternative method of weight matrix
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construction4, based on the biophysical model of TF–DNA
interaction, was developed. This method reduced the number
of false positives and resulted in the explicit appearance—and
determination—of the binding threshold. Additionally, there
are probably problems with the collection of binding sites
used to construct the weight (energy) matrix [8] because, first,
the collection of binding sites is most often obtained from a
database, and is likely to be assembled under diverse and ill-
characterized conditions [7]. Second, for most TFs, only a
few binding sites are available [10, 11], making the amount
of data insufficient for determining parameters of TF–DNA
interaction (i.e., weight matrix).

As an alternative to using binding sites assembled
in biological databases, SELEX (systematic evolution of
ligands by exponential enrichment) experiments [12, 13]
can be suitable for generating an appropriate dataset under
controlled (uniform) conditions. Additionally, a recent
experimental advance [14] which combines SELEX with
SAGE (serial analysis of gene expression) [15], allows an
efficient generation of a large number of binding sites for a
given TF. In this paper, we ask the following question: What
is an appropriate experimental and computational procedure
for inferring parameters of TF–DNA interaction from SELEX
experiments? In particular, we will address the following two
issues: (1) How should SELEX experiments be designed in
order to generate a dataset suitable for determining parameters
of TF–DNA interactions? (2) How should a correct analysis
of data from a suitable experiment be done? To address
these questions, we will use a biophysical model of TF–DNA
interactions to quantitatively model SELEX experiments. We
will incorporate this model in the novel bioinformatic method
of data analysis that we will subsequently develop.

The outline of this paper is as follows. In section 2, we
will review SELEX experiments and point to the potential
problems in the experimental procedure from the viewpoint of
constructing the appropriate weight matrix. In section 3 we
will quantitatively model the SELEX experiments. Based on
this model, we will show that there is a range of experimental
parameters for which the energy matrix cannot be inferred
by using the standard SELEX procedure. However, we will
show that a modified experiment allows a robust generation
of the appropriate dataset. In section 4 we will propose
a novel bioinformatic method of data analysis for modified
SELEX experiments, and apply it to the data obtained in the
experiment by Roulet et al [14]. In section 4.2 we will show
that our method leads to a significant improvement in the
false positive/false negative trade-off compared to the standard
methods of data analysis. Quantitative analysis that supports
sections 3 and 4 is presented in appendices B–F. Finally, in
section 5 we will summarize our results, compare them with
some widely held views and put our work in the context of
future research.

4 Weight matrices constructed by the method given in [7] were denoted as
energy matrices. This emphasizes that weights in the matrix correspond to
the estimates of contribution to the binding (free) energy due to the presence
of a certain base at a certain position in the binding site.

Figure 1. Scheme of the SELEX experiment procedure. After n
cycles of protein binding, selection and amplification, a certain
number of DNA sequences are extracted and sequenced. Note that
ds-DNA stands for double-stranded DNA.

2. From SELEX to weight matrix

SELEX is a method in which a large number of
oligonucleotides (DNA, RNA or unnatural compounds) can be
rapidly screened for specific sequences that have high binding
affinities and specificities toward the given protein target [12].
For an explanation of the applications of SELEX procedure,
one should refer to some of the review papers [13, 16].

The scheme of the widely used SELEX experiment
procedure is shown in figure 1. The experiment is usually
performed as follows. In the first step, a library of random
oligonucleotides is synthesized. Protein is then mixed with
the oligonucleotides library. Oligonucleotides that are bound
by proteins are then separated from those that are not bound
(e.g., by gel shift), which is called the selection step. Selected
oligonucleotides are then amplified by the polymerase chain
reaction (PCR) [17], which is called the amplification step.
One cycle of TF binding, selection and amplification is called a
SELEX round. The SELEX rounds are repeated several times
[12, 13], and some number of sequences (typically from 20
to 50) are extracted and sequenced from the final round. This
procedure is successful in identifying the strongest binding
sites in the initial pool of random sequences, as demonstrated
by experiments reported in the literature (e.g., [12]), as well
as by the numerical studies [18, 19]. We will further call
the widely used experimental procedure described above the
high stringency SELEX, for reasons that will become apparent
later. Next, in a typical data analysis the sequences selected
in the last round of SELEX are used as a training set, from
which elements of the information-theoretic weight matrix for
a given TF are constructed [20, 21]. This weight matrix can
then, in principle, be used to search for TF binding sites in a
genome.

Is the standard experimental and data analysis procedure
outlined above really suitable for successfully inferring a
correct weight matrix? Looking at the literature, it appears
that this procedure often fails in practice. For example, in
the SELEX experiment performed by Cui et al [21], around
50 binding sites for LRP TF, selected in the last SELEX
round, were extracted and sequenced. Binding sites were then
used to construct an information-theoretic weight matrix, and
the binding dissociation constants of the extracted sequences
were then experimentally measured. However, the correlation
between the dissociation constants and the information scores
(i.e., the weight matrix scores) was quite poor, and accordingly,
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Cui et al [21] comment that “the poor correlation for the
data described here seems surprising . . . ”. Further, in [9]
a comprehensive comparison between the weight matrices
obtained from the eight available SELEX experiments with
E. coli TFs and the corresponding weight matrices constructed
from natural binding sites was performed. In seven out of
these eight cases, large discrepancies between the matrices
derived from natural sites and those derived from SELEX were
reported. Therefore, obtaining good weight matrices from the
standard SELEX procedure appears to be more an exception
than a rule.

Why does the procedure described above appear to fail
in many cases? The first possibility is that the assumption of
additivity in TF–DNA interactions [22], on which the weight
matrix representation is based, may not be suitable. This is,
however, not likely, since this approximation has proved to
be very good in many cases [20, 22–24]. Alternatively, the
reason for the failure might be that the analysis was done
using the information theory based method. As discussed
in the introduction, the information theory based procedure
does not properly incorporate saturation in binding probability.
Therefore, it is not surprising that this is not the most
appropriate method for correctly inferring the energy matrix.
In this paper, we will develop a method of data analysis based
on the biophysical model of protein–DNA interactions.

However, it seems rather surprising that the information
theory based method is the only reason for the apparent
problems with the weight matrices inferred from SELEX
discussed above. There may be a systematic problem with the
high stringency SELEX procedure when it comes to generating
a dataset suitable for inferring weight/energy matrices. With
regard to this, it is apparent that two possible problems may
arise. First, it may be that the noise in the dataset is too large,
i.e., many of the extracted sequences are too weak or are non-
specific binders (for a discussion on non-specific binding, see
appendix B). Second, if the extracted sequences consist of only
the strongest binding sites, the inferred weight matrix elements
will come with large errors. To observe this, it is useful to take
the limit in which only the sequence corresponding to the
consensus binding site is extracted, where it is obvious that
the energy matrix cannot be obtained from such information.
For a more detailed statistical analysis of this issue, refer to
[14]. Therefore, our first goal is to address possible systematic
problems with the experimental procedure by quantitatively
modeling the SELEX experiments. We also incorporate this
model in the bioinformatic method of data analysis that we
develop in section 4.

3. A quantitative model of SELEX

Our model of SELEX is based on the biophysical view of
TF–DNA interactions, which has been used in a few recent
papers (see, e.g., [7, 25, 26]). For completeness and to
introduce the notation, we briefly review a biophysical model
of TF–DNA interaction in appendix A. We start this section by
extending this model in several ways, so as to make it suitable
for the modeling of SELEX.

First, we take into account non-specific binding of a TF
to DNA. As we show in appendix B, the binding probability
(equation (A.1)) is (approximately) modified in the following
way due to the non-specific binding (see equations (B.5) and
(B.9)),

p(S)≈ 1

exp(E(S)− µ) + 1
+ cns = f (E(S)− µ) + cns, (1)

where E(S) is binding (free) energy5 of TF to a DNA
sequence S, µ is chemical potential (see appendix A), while
cns depends on the threshold of non-specific binding Ens (see
equation (B.8)). Note that we scale all energies with kBT .
From equation (1) it follows that non-specific binding cannot
be distinguished from the so-called background partitioning.
Background partitioning [12] is an effect that, during the
selection step (section 2), it is not possible to perfectly separate
sequences that are bound by protein from those that are not
bound. Due to that, in each round of SELEX, some DNA
sequences not bound by TF are also selected with probability
cb. A combined effect of non-specific binding and background
partitioning can be described by equation (1), where cns →
cns + cb (further in the text, we denote c = cns + cb). Although
c itself is likely to be small (e.g., cb ∼ 0.1% in [12]), the effect
of non-specific binding/background partitioning can be
considerable, since in SELEX experiments there is typically a
large excess of DNA over protein, so only a small fraction of
all DNA sequences are typically (specifically) bound by TFs.

Second, we take into account that the length of DNA
sequences in SELEX experiments is usually larger than the
length of the TF binding site. For example, in the experiment
by Roulet et al [14], which will be the subject of our analysis
in section 4, the sequence length is l = 25 bp long, while the
length of the binding site for CTF/NFI TF, studied in the
experiment, is L = 15 bp. In appendix C we discuss
the modification of the binding probability due to the fact
that l is greater than L. We show that this effect can be
approximately accounted for by modifying the distribution
of binding energies from ρ(E) (see equation (A.4)) to ρM(E)

given by equation (C.4). Additionally, we note that the model
has to take into account that the support ES of the energy
distribution is finite (see equation (C.7)), with ‘bottom of the
band’ determined by the energy of the strongest binder in the
pool of random DNA sequences.

We note that we neglect stochastic effects in our model.
This is generally justified by the fact that the typical length L
of a TF binding site is 20 bp or less, while the total number
of sequences used in SELEX is typically N ∼ 1015 [13], so
each possible DNA sequence of length L is present in about
N/4L ∼ 103 copies. Additionally, we note that high fidelity
DNA polymerase is used in SELEX experiments, so mutations
of sequences during the PCR amplification can generally be
neglected. In that respect, SELEX is different from the so-
called in vitro evolution experiments [27, 28], where reduced
fidelity DNA polymerase and a larger number of PCR rounds
are used to (purposefully) introduce mutations and generate
strong binding sequences that do not exist in the initial, small
(N ∼ 105), random DNA pool.
5 For brevity, from now on we will refer to the free energy of binding simply
as ‘binding energy’. In chemical literature, the commonly used notation for
this quantity would be �G(S) rather than E(S).
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3.1. High stringency SELEX

In this subsection, we model the high stringency SELEX
procedure, based on the (extended) model of TF–DNA
interactions described above. We introduce equations that
allow us to determine the position of chemical potential µ(n)

and energy distribution of selected oligos ρ
(n)
M (E), as a function

of the number of performed SELEX rounds n,

ρ
(n)
M (E) ∼ [f (E − µ(n)) + c]ρ(n−1)

M (E) (2)

and

pt = p
(n)
f + p

(n)
b = K exp(µ(n)) +

∫
ρ

(n−1)
M (E)

× f (E − µ(n)) dE + dt exp(µ(n) − Ens). (3)

In the equations above, pt , p
(n)
f and p

(n)
b are respectively

total, free and bound concentrations of protein and dt is
the total amount of DNA. K is a multiplicative constant
introduced by equation (A.2). Equation (2) connects energy
distributions of selected sequences from nth and (n − 1)th
round. Equation (3) is the mass conservation law, and it
determines the position of µ(n). ρ

(n−1)
M (E) in equation (3)

is normalized to dt . Note that all energies are rescaled by
kBT . The equations above are solved recursively, i.e., we
first solve them for n = 1, then increase n by 1 etc. Note
that ρ

(0)
M (E) is ρM(E) given by equation (C.4) (appendix C).

We also note that, since in SELEX experiments there is
typically a (large) excess of DNA over protein (dt � pt), most
of the protein is bound to DNA and p

(n)
f (i.e., K exp(µ(n)) term

in equation (3)) can be neglected compared to p
(n)
b .

In general, equations (2) and (3) have to be solved
numerically; however, the main features can be understood
qualitatively. Let us assume that the total amount of protein
and the total amount of DNA (after each amplification step)
are kept constant in each round of the experiment (as, e.g., in
[12]). It is evident that as n increases, the (average) affinity of
selected oligos will also increase, which leads to the increase
in the amount of p

(n)
b and decrease of p

(n)
f . Therefore, both

µ(n) (note that µ(n) = log(p
(n)
f /K)) and the maximum E(n)

m of

energy distribution ρ
(n)
M (E) move to stronger binding energies

with the increase in the number of performed SELEX rounds.
(Many experiments are performed in a way that the total
amount of protein pt ≡ p

(n)
t is decreased from one SELEX

round to the next (e.g., see [29]). It is evident that the previous
conclusion about the decrease of µ(n) holds in this case as
well.) A limit in which equations (2) and (3) can be solved
analytically is analyzed in appendix D. In particular, equations
(D.2) and (D.6) quantitatively support the discussion above.

In further analysis, we take the following values of
parameters: χle = 4kBT (see appendix C), pt = 10 nM,
dt = 10 µM and ES = −4.3χle , while Ens = −2.0χle (see
appendix B). The assumed values of pt and dt are typical
for SELEX experiments [12], while (typical) L ∈ {6, . . . , 20}
bp (base pairs) leads to ES in the interval from −3.5χle to
−7χle (see equation (C.7)). Values of χle and Ens are expected
to differ from one TF to the other, but the assumed values
are likely inside the realistic range [25]. Figure 2 shows
ρ

(n)
M (E) numerically obtained from equations (2) and (3), with

−4 −3 −2 −1 0 1 2 3
E/χ

l

en
er

gy
 d

is
tr

ib
ut

io
n

n=0 

n=1 

n=2 

n=3 

Figure 2. Change of ρ
(n)

M (E) for a different number of performed
rounds n, for a high stringency SELEX experiment. Peaks centered
around zero correspond to random DNA binders, while the left-hand
corner of the figure corresponds to the highest affinity binder.

the parameter values stated above. It is useful to observe
how the signal-to-noise ratio changes with n, where the noise
is the number of selected random binders (corresponding to
peaks centered around zero), while the signal is the number of
selected specific binders (for signal-to-noise ratio in the limit
of unsaturated binding, see appendix D and equation (D.4)).
For n = 1, we see that there is a small number of specific
binders (note the small peak centered at E/χle ≈ −3.5)
compared to the number of selected random sequences, so
that the signal-to-noise ratio is low. Because of the high
noise-to-signal ratio, it is not possible to infer (correct) energy
matrix from such a dataset. For n = 2, random binders are
completely eliminated, so the problem with noise does not
exist anymore. However, another problem emerges, i.e., since
energy distribution of selected oligos has reached support ES ,
(only) the strongest binding sites are selected. As discussed
in section 2, a correct energy matrix cannot be obtained from
such a sequence set. For n = 3, we select the sequence set
with even stronger binding affinities, etc. We note that the
sharp cuts in distributions ρ(n)(E) at ES (see figure 2) are
the consequence of the approximation that we use for ρ

(0)
M (E)

(see equation (C.8)). In reality, ρ
(n)
M (E) becomes discrete

when one approaches ES , which obviously does not change
the conclusions inferred from figure 2.

We solved equations (2) and (3) for different parameter
values. As shown by the example above, for a range of realistic
parameter values the appropriate choice for the total number
of performed rounds n does not exist6. On the other hand, for
some (other) parameters, for which selected DNA sequences
have an acceptable signal-to-noise ratio and E(n)

m does not
reach the highest affinity binders, the optimal choice of n
does exist. However, we note that, in practice, it is very

6 In the analysis presented here, we used that pt is constant in each round of
SELEX. If pt is decreased from one round to the next, as it is, in practice,
done in many experiments (e.g., [29]), it is evident that this problem is even
more pronounced.
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Figure 3. Change of ρ
(n)

M (E) for different numbers of performed
rounds n, for a SELEX experiment in which the chemical potential
µ is fixed. Note that once the maximum of ρ

(n)

M (E) reaches µ, it
further moves very slowly toward the higher binding affinities.
µ = −3.1χle , while the other parameters are the same as in figure 2.

hard to reliably predict such n, i.e., to decide when to stop
the experiment, because a studied TF has a priori unknown
binding parameters (i.e., χle and Ens). Therefore, even in
the case when the appropriate choice of n exists, it cannot,
in practice, be simply calculated from equations (2) and (3).
From this, it follows that the high stringency SELEX procedure
is, in practice, unsuitable for inferring the parameters of TF–
DNA interaction. In the next section, we discuss modification
of the SELEX procedure that allows a robust generation of the
appropriate set of binding sequences.

3.2. SELEX with fixed selection stringency

Let us now assume that instead of moving toward the stronger
binding energies, the chemical potential µ(n) = µ is constant
in each round of the experiment. In such a case, from equation
(2) it follows that the energy distribution is given by the
following (simple) expression:

ρ
(n)
M (E) ∼ f n(E − µ)ρ

(0)
M (E). (4)

As we show in appendix E, from equation (4) it follows
that E(n)

m = Ele − nχ2
le

in the first rounds of experiment, when

n <
(
Ele − µ

)/(
χle

)2
. Thus, in the first few rounds, the

maximum of energy distribution E(n)
m rapidly moves to the

higher affinities. However, once E(n)
m reaches µ, it further drifts

very slowly toward stronger binding energies (equation (E.3)).
Figure 3 is equivalent to figure 2 with the difference that
µ(n) = µ is fixed throughout the experiment. We see that
for n = 1, we have the same situation as in the high stringency
experiment, i.e., the signal-to-noise ratio is too low. For n = 2,
non-specific binders are eliminated, similarly as in the high
stringency experiment. However, the important difference is
that instead of reaching the strongest binders (i.e., ES), E(2)

m

is close to µ. For n > 2, E(n)
m drifts very slowly toward the

higher binding energies, remaining in the proximity of µ, and

consequently does not reach ES . More precisely, in appendix E
we show that E(n)

m asymptotically approaches µ − 2kBT .
The procedure described above has a significant practical

advantage compared to the high stringency experiment
discussed in the previous subsection. Since E(n)

m remains
essentially fixed for larger n, one can perform more rounds (say
4 or 5), thus being sure that random binders are eliminated,
without the risk that only the strongest sequences will be
selected. Since the procedure tolerates the whole range of
n (in the above example n � 2), we call it robust.

The next issue is how the constraint of fixed chemical
potential can be experimentally implemented. To our
knowledge, all but one of the performed experiments
correspond to high stringency SELEX. However, in the
experiment done by Roulet et al [14], the SELEX experiment
was modified by inclusion of the radiolabeled sequence (probe)
of moderate binding affinity E∗. The concentration of the
DNA, added to the reaction mixture as a competitor to the
radiolabeled probe, was in each round adjusted, so that a fixed
fraction of the probe is bound by CTF/NFI TF in each SELEX
round. From this it follows that f (E∗ − µ(n)) = const,
leading to µ(n) = const. Therefore the procedure in [14],
provides a practical solution for fixing chemical potential
through different rounds of experiment.

We also note that the analysis above gives a practical
criterion at what n the experiment should stop. The procedure
can be completed when random binders are eliminated and
E(n)

m has reached µ, at which point we have a ‘quasi-saturation’
(see figure 3 and equation (E.3)). Since at quasi-saturation
the total amount of DNA (adjusted and directly observed
by experimentalists) ceases to significantly change from one
round to the next, this gives a practical criterion at what n the
experiment should end.

4. SELEX data analysis

In this section, we present a bioinformatic method for the data
analysis of fixed stringency (µ = const) SELEX experiments.
We will first briefly present the basic idea behind our method.
We will then introduce our novel algorithm for constructing an
energy matrix in section 4.1. In section 4.2 we will apply the
algorithm to the experimental data, and compare the results
with both the information theory based method and a widely
used empirically formulated procedure, MatInspector [30].

Figure 3 and appendix E show that the maximum of energy
distribution for oligos selected in the final rounds of SELEX
has to be in the vicinity of the chemical potential. It follows
that the majority of sequences extracted from SELEX are in
the saturated regime, i.e., bound with the probability close to
1 (see appendix A). In [7] we showed that the information
theory method is appropriate to use when sequences are
in the unsaturated regime, but that this method does not
properly incorporate saturation in the binding probability.
In the context of SELEX experiments considered here, the
information theory based method would be appropriate to use
only if the majority of oligos were in the exponential tail of the
binding probability f (E − µ). Since this does not happen in
the fixed stringency SELEX experiments, we will, in this
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section, devise a method which uses the correct binding
probability. Additionally, as described in section 3 and
appendix C, we have extended a biophysical model of TF–
DNA interactions to take into account that the length of a
TF binding site is typically shorter than the lengths of DNA
sequences in SELEX, which we will also incorporate into our
new procedure.

A key point in the implementation of our method will be to
obtain TF–DNA interaction parameters through a maximum
likelihood procedure. We will infer the initially unknown
parameters by maximizing the probability that the extracted
set of DNA sequences is observed as the outcome of the
experiment. The probability of extracting the given set of DNA
sequences will be calculated by taking into account the correct
TF–DNA binding probability (which properly describes the
saturation effects) and by appropriately modifying affinity
distribution of DNA oligos to account for difference in lengths
between TF binding sites and SELEX DNA sequences. The
set of equations resulting from varying this probability with
respect to the unknown parameters will then be numerically
solved to compute the elements of the energy matrix.

4.1. Estimating the energy matrix

In this subsection, we introduce a novel algorithm appropriate
for data analysis of fixed stringency SELEX experiments. Let
us assume that after n rounds of SELEX, set A, which contains
nS sequences S(j) (j ∈ (1, . . . , nS)), has been extracted and
sequenced. As summarized above, we will infer the unknown
energy matrix by the maximum likelihood procedure. The
probability of observing sequences from set A, but no other
sequences from the initial DNA pool, is given by

exp(�) =
∏
S∈A

γf n(E(S) − µ)
∏
S ′ /∈A

[1 − γf n(E(S ′) − µ)].

(5)

Terms f n in the equation above account for n selection
processes. The factor γ is a ‘sampling probability’ and it
absorbs all extraction and amplification events (there are n
of them), as well as the final sequencing after the nth round.
Probabilities of extraction, amplification and sequencing are
all assumed to be independent of sequence S, so γ does not
depend on S either. We also note that we have neglected
non-specific binding/background partitioning in equation (5),
since we assume that n in equation (5) is large enough, so
that non-specific binders are eliminated by the nth round (see
figure 3). Further, the sum over unbound sequences S ′ can be
approximated in terms of the binding energy distribution:∏
S ′ /∈A

[1 − γf n(E(S ′) − µ)] ≈ exp

[
−γ

∑
S ′ /∈A

f n(E(S ′) − µ)

]

≈ exp

[
−γ

∫
ρM(E)f n(E − µ) dE

]
. (6)

In the above equation, we use ρM(E) (see equation (C.4))
instead of ρ(E) (see equation (A.4)) to account for the fact
that the length of used DNA sequences is typically larger than
the length of the TF binding site (see appendix C). Similarly,

we approximate f (E(S) − µ) in the first term of equation (5)
by f (E(sM)−µ) (see appendix C), where sM is the TF binding
site of length L, with the maximal binding energy on l long
sequence S. In practice, the set of binding sites sM can be
identified by an unsupervised search of the set of sequences S
for L long statistically overrepresented motifs (e.g., by using
the Gibbs search algorithm [31]). We also note that in the
first (approximate) equality in (6), we used γ 	 1, which is
justified by the fact that the number of DNA sequences with
binding energies below µ is typically much larger than the
number of sequences nS extracted from the last round of the
experiment. For example, if we assume µ = −3χle (as in
figure 3), nS ∼ 103 [14] and typical N ∼ 1015 [13], we have
γ = nS

/[∫
f n(E − µ)ρM(E) dE

] ∼ 10−9.
Since changing the overall scale of energy corresponds to

multiplying energy scores for all binding sites with the (same)
constant, for bioinformatic purposes, i.e., for TF binding site
identification, it is not necessary to determine the overall scale
of energy (see also [7]). The natural quantity to scale all
energies is width χ (in units of kBT ) of energy distribution for
an ensemble of random oligos of length L (see [7] as well as
equations (A.4)–(A.6) in appendix A). With such scaling, and
provided that zero of energy is set to coincide with the mean
E of energy distribution in the ensemble of random sequences
(see equation (A.5) in appendix A), E(S)/χ directly gives the
estimate of significance of the given energy score. That is, the
probability that a random DNA sequence will have a stronger
binding energy than E(S)/χ is given by∫ E(S)/χ

−∞
ρ(E) dE ≈ 1

2

[
1 − erf

(
−E(S)/χ√

2

)]
∼ exp(−E(S)2/(2χ2)). (7)

Here ρ(E) is the energy distribution for the set of random
oligos (equation (A.4) in appendix A), erf(x) is the error
function, and the last approximation is valid for |E(S)/χ |� 1.
Also note that if we consider the energy matrix as a vector in
4L-dimensional space, χ is equal to the norm of this vector (see
equation (A.7) in appendix A), so rescaling with χ corresponds
to normalizing the energy matrix to unit ‘length’. We further
use the notation ε̃i,α = εi,α/χ .

Additionally, since maximum E(n)
m (i.e., the mean within

the Gaussian approximation of ρ
(n)
M (E)) has to be close to µ

(see section 3.2 and figure 3), we impose the constraint that

µ/χ =
∑
S∈A

E(S)/(nSχ) =
∑
i,α

ε̃i,αS∗
i,α (8)

where S∗
i,α = ∑

j S
(j)

i,α

/
nS . In order to obtain ε̃i,α we maximize

� (defined by equations (5), (6) and (8)) with respect to ε̃i,α

and γ . Variation of � with respect to ε̃i,α and γ then leads
to the set of equations which are given in appendix F. Those
equations can be numerically solved to obtain ε̃i,α .

4.2. Application of the algorithm

To demonstrate our method, we use it to analyze the data
from the experiment by Roulet et al [14]. In addition to the
modification discussed in section 3.2, Roulet et al combined
SELEX with the SAGE protocol [15], which allowed them to
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Figure 4. Energy distributions obtained by using the finite T energy
matrix, the information-theoretic weight matrix and the
MatInspector weight matrix are compared. Energy distributions are
computed for more than 6000 binding sites extracted from the third
round of SELEX [14]. Zero on the horizontal axis corresponds to
the mean value of binding energy in a random ensemble. Note that
the maximum of energy distribution for non-specific binders is
displaced relative to zero (i.e., positioned at around −1.5), caused
by the fact that the length of the DNA sequences (25 bp) is larger
than the length of the CTF/NFI TF binding site (15 bp). Actually,
the energy distribution of non-specific binders matches well with
ρM(E) calculated in appendix F (equation (C.4)).

sequence a large number of DNA oligos. A large dataset
provides an obvious advantage for a precise estimation of
energy parameters. In particular, a total of four SELEX rounds
were performed, and approximately 880, 960, 1200, 6900 and
230 sequences were obtained from rounds 0, 1, 2, 3 and 4
respectively (note that round 0 refers to the initial, completely
random, DNA pool).

We use about 230 sequences obtained after the fourth
round of experiment, to estimate ε̃i,α . We first search those
230 sequences S, to identify CTF/NFI binding sites sM that
correspond to L = 15 bp long statistically overrepresented
motifs. The unsupervised search was performed by using a
Gibbs search based algorithm [32], and the obtained set of
binding sites sM was used to determine ε̃i,α by numerically
solving equation (F.5). The obtained energy matrix ε̃i,α is
given in appendix F (table F1). We will further call ε̃i,α

the finite T energy matrix, to emphasize that, contrary to the
QPMEME algorithm [7], the optimization of � (equation (5))
is not done in the T → 0 limit. We shift columns of ε̃i,α ,7

so that the mean of the energy distribution ρ(E) (given by
equation (A.5)), for the ensemble of random oligos of length
L is zero.

We next compare our method with both the information
theory based method and a widely used empirically formulated
procedure, MatInspector [30]. For this purpose, we construct
both the information theory weight matrix wi,α (see, e.g., [33])

7 Note that a provisional base independent constant can be added to each
column of the weight (energy) matrix, which corresponds to the shifting zero
of the weight matrix scores.
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Figure 5. Comparison of the DET curves for the finite T energy
matrix, the information theory weight matrix and the MatInspector
weight matrix. Note that E/χ is measured relative to the average
binding energy in a random ensemble, so that exp(−E2/(2χ 2)) on
the horizontal axis is proportional to the number of false positives.
A false negative fraction is inferred from figure 4, by calculating
cumulatives of the corresponding energy distributions.

and the MatInspector weight matrix wMI
i,α (see [30]) from the

same set of binding sites sM that we used to compute our finite T
energy matrix. The obtained matrices are given and compared
in appendix F. We normalize wi,α and wMI

i,α and choose the zeros
of weight matrix scores (i.e. ‘energies’) for both matrices in
the same way as for ε̃i,α . The three matrices are then used to
compute the corresponding energy distributions for more than
6000 sequences extracted from the third round of SELEX, and
their comparison is shown in figure 4. We see that there is a
noticeable difference in the estimates of energies obtained by
the three weight matrices.

To compare performance of the methods, we will infer a
false positive/false negative trade-off for the three matrices.
The fraction of false negatives, for certain threshold E/χ ,
can be readily estimated by computing cumulatives of the
distributions shown in figure 4. Further, the fraction of false
positives can be calculated by computing the corresponding
cumulative of the energy distribution of random oligos (see
equation (A.4) in appendix A). Therefore, with our choice
for the zero of energy, it is evident that exp(−E2/(2χ2))

(on the abscissa of figure 5) is proportional to the number
of false positives. More precisely, if one searches a random
DNA sequence with total length ND , the total number of
binding sites with energy scores below E/χ is approximately
(ND/

√
2π)

∫ E/χ

−∞ exp(−x2/2) dx ∼ ND exp(−E2/(2χ2)) (see
equations (A.4) and (7)), where the last approximation is valid
for |E/χ | � 1.

The above estimates of false positives and false negatives
can be used to obtain the detection error trade-off (DET)
curves (see [7, 34]), which are shown in figure 5.8 We see

8 In the construction of the DET curve for MatInspector we did not use the
so-called ‘core similarity’, which can optionally be used as a second threshold
in the method [30]. The reasons are that the use of core similarity is left as an
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that over the entire range of fixed false negative values on
the vertical axis, fraction of false positives for the finite
T energy matrix is few times lower compared to the false
positive rate for the information-theory weight matrix. In the
case of the MatInspector weight matrix, the finite T energy
matrix has about two times smaller false positive rate for false
negative fractions smaller than 40%, while for larger false
negative fractions the two DET curves come close to each
other. We note that the meaningful range, in which one is
likely to operate in practice, is the one with a smaller fraction
of false negatives (i.e., 40% or below), where the finite T
energy matrix clearly shows better performance.

Figure 5 shows that, while our method outperforms
both MatInspector and the information theory method, it
appears that MatInspector shows a better false positive/false
negative trade-off compared to the information theory method.
We, however, note that MatInspector is an empirically
formulated procedure, i.e., it is not founded on either statistical
considerations, such as the information theory method, or
on a (bio)physical model of TF–DNA interactions, such
as the method presented here. We therefore believe that
the performance of MatInspector would change from one
experiment to the other, and that a better performance of
MatInspector compared to the information theory method
may not prove to be systematic. On the other hand, since
our method is based on a correct physical model of SELEX
experiments, we expect that it will systematically produce
reliable estimates of the interaction parameters. In any case,
fixed stringency SELEX experiments, which will be performed
in future, will provide opportunities to more thoroughly test
the performance of the algorithms.

Finally, we discuss how the above comparison of the three
algorithms may be affected by the possible presence of noise in
the input data used to construct the three weight matrices. We
obtained the set of (putative) binding sites through a heuristic
Gibbs sampling algorithm, which is in principle not guaranteed
to find the true binding sites. So if there are misassignments in
the input data, the question is whether the better performance
of our method could be the result of higher robustness with
regard to noise, rather than higher accuracy for error-free data.
To asses the amount of noise in the input data we performed a
self-consistency check. We scored all DNA sequences selected
in the fourth round of the experiment with the finite T energy
matrix and classified all binding sites above score −3.4 as
specific binders and all below −3.4 as non-specific binders
(note that −3.4 corresponds to the saddle of the bimodal
distribution shown in figure 4). We find that only one in the
175 large set of input binding sites obtained by the Gibbs
algorithm is not contained in the list of 184 specific binders
classified with the finite T energy matrix. This indicates that
the noise level in the input data is likely quite small. The
apparent low number of misassignments in the output of Gibbs
alignment is likely a consequence of the low number of random

‘optional feature at the discretion of the user’ [30], which was not used in the
example searches in [30]. Additionally, in [30] it is not stated how to choose
the value of the second threshold, which makes it hard to fairly compare a
method with two (arbitrary) thresholds with the methods that use only one
threshold.

sequences extracted from the fourth round of SELEX9, and the
fact that the length of SELEX sequences is quite short (25 bp).

5. Conclusion and outlook

In this paper, we modeled SELEX experiments and proposed
a novel method of data analysis. Our analysis showed that for
a certain realistic range of parameters, the suitable solution for
the number of rounds that should be performed does not exist
at all. We argued that even for the parameters for which the
solution exists, it is very hard to find such a solution in practice.
However, we showed that the modification of the standard
SELEX procedure in which chemical potential is fixed [14]
robustly selects sequences that allow one to successfully
determine the energy matrix. We next proposed a novel
method for inferring an energy matrix from the sequences
extracted from a SELEX experiment with fixed selection
stringency. In contrast to the widely used information theory
weight matrix method, our procedure correctly represents
saturation in binding probability. As an example of the
procedure, we estimated the energy matrix for CTF/NFI TF
by analyzing the data from the experiment by Roulet et al [14].
We demonstrated that our energy matrix leads to a significantly
better false positive/false negative trade-off.

Finally, we compared the results of our analysis with
some widely held views. It is generally well understood
that doing too large a number of SELEX rounds leads to too
strong a selection. It is, however, widely believed that the
problem can be solved by doing only few selection cycles.
For example, in the recent SELEX experiment by Kim et al
[35], it was noted, “ . . . we used fewer rounds of selection than
a conventional SELEX to avoid the enrichment of just a few
high affinity winners”. However, as shown by our analysis,
this can lead to another problem, i.e., if too few SELEX rounds
are performed, too large a number of random sequences are
likely to be selected. Moreover, we found that the problems
of overselection and too high amount of noise are, in practice,
very hard to reconcile within the standard SELEX procedure
and that a modified experiment with a fixed chemical potential
has to be performed instead. From the aspect of data analysis,
we showed that the commonly used information theory based
method, widely believed to be well founded in both statistics
and thermodynamics [36], is not appropriate for analysis of
data for SELEX experiments with fixed selection stringency.

In the context of future research, we believe that the
analysis presented here, together with the experimental
methods introduced in [14], opens a perspective to apply high-
throughput, fixed stringency, SELEX experiments for a large
number of different transcription factors. This would provide
a reliable method for detection of transcription factor binding
sites, and would facilitate the comprehensive understanding of
gene regulation.

9 Note that figure 4 shows that there is a quite small amount of noise even
in the third round of experiment. The noise is further reduced in the fourth
round.
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Glossary

Weight matrix. For a binding pattern of length L it is
defined as a matrix of numbers wi,α where i ∈ [1, 2, . . . , L]
and α ∈ [A, T, C, G]. The score of the sequence α1, . . . , αL

is given by w1,α1 + w2,α2 + · · · + wL,αL
.

Sensitivity. It is defined as TP/(TP + FN), where TP is the
number of true positives and FN is the number of false
negatives. In the context of a TF binding site search, a true
positive (TP) arises when an algorithm correctly classifies a
true binding site as such, while a false negative (FN) arises
when an algorithm classifies a true binding site as a
non-binding site.

Specificity. It is defined as TN/(TN + FP), where TN is the
number of true negatives and FP is the number of false
positives. In the context of TF binding site search, a true
negative arises when an algorithm correctly classifies a true
non-binding site as such, while a false positive (FP) arises
when a search algorithm classifies a true non-binding site as a
binding site.

Serial analysis of gene expression (SAGE). It is a method
for comprehensive analysis of gene expression patterns. In
the context of this paper, a part of the SAGE protocol can be
used to link together oligomers extracted from SELEX in
order to form longer DNA molecules that can be efficiently
sequenced.

Gel shift. It is a technique used to separate free DNA
molecules from DNA molecules that are in complex with
protein, based on the fact that protein–DNA complexes
migrate more slowly through gel under the influence of an
electric field.

Polymerase chain reaction (PCR). It is an experimental
technique that allows one to produce a large number of
copies of any fragment of DNA. In principle, the number of
DNA molecules is doubled in each round of PCR, so there is
an exponential increase in the number of molecules with the
number of performed PCR rounds.

Dissociation constant. For sequence S it is equal to the
concentration of (free) TF for which there is 50% probability
that a DNA molecule S will be bound by the TF. The
relationship between the dissociation constant and the
binding energy E(S) is given by KD(S) = K exp(E(S)),
where K is a proportionality constant.

Maximum likelihood estimation. It is a statistical method
used to estimate unknown parameters of a (known)
probability distribution. The basic principle is to draw a
sample from the distribution, calculate the probability that
this sample is observed and then determine the unknown
parameters such that this probability is maximal.
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Appendix A. A biophysical model of TF–DNA
interaction

Let us consider an experiment where a certain number of
identical DNA oligomers with sequence S and length L (equal
to the length of the TF binding site) are mixed into a solution
with some concentration of TF. It can be shown (see, e.g., [7])
that the equilibrium probability p(S) that a DNA sequence S
is bound by TF is given by

p(S) = 1

1 + exp(E(S) − µ)
= f (E(S) − µ). (A.1)

In equations (A.1) and (A.2), pf is the concentration of free
TF, µ is the chemical potential, while K is a multiplicative
constant related to the counting number of quantum states in
a box (e.g., see [37]).

Chemical potential µ is set by the free TF concentration
in the solution:

µ = log(pf /K). (A.2)

Note that in the above equations all energies are rescaled by
kBT . The form of the binding probability f (E(S) − µ) in
equation (A.1) corresponds to the Fermi–Dirac distribution
(see, e.g., [37]). If the binding energy E(S) of a sequence
S is well below µ, then f (E(S) − µ) is close to 1 and the
sequence S is almost always bound by TF. We will further
call sequences with binding energy E(S) which corresponds
to this limit saturated. On the other hand, if E(S) is well above
µ, the sequence S is rarely bound, with probability given by
the Boltzmann distribution f (E(S) − µ) ≈ exp(−(E(S) −
µ)). As shown in [7], the information theory weight
matrix procedure assumes Boltzmann distribution of binding
probability, and is, therefore, not appropriate whenever
saturation of binding occurs.

Further, we need an expression for E(S). The most simple
model of TF–DNA interaction, which we use in this paper,
assumes that the interaction of a given base with the factor
does not depend on the neighboring bases,

E(S) ≈ ε · S =
L∑

i=1

4∑
α=1

εα
i Sα

i , (A.3)

where Sα
i = 1, if base α is at position i and Sα

i = 0 otherwise.
εα
i is the interaction energy with the nucleotide α at the position

i = 1, . . . , L of the DNA string [20], and ε is called the energy
matrix. The simple parameterization given by equation (A.3)
provides a very good approximation in many cases [20, 22–24],
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although there are examples where binding at some positions
in the binding site shows dependence on dinucleotide pairs
[38–40].

We further need to compute the energy distribution ρ(E)

for an ensemble of randomly generated oligonucleotides, with
length equal to the length L of TF binding site. In [7] it
was shown that in the first approximation ρ(E) is given by a
Gaussian,

ρ(E) ≈ exp(−(E − E)2/2χ2)/
√

2πχ2 (A.4)

with

E =
L∑

i=1

εi (A.5)

and

χ2 =
L∑

i=1

4∑
α=1

pα

(
εα
i − εi

)2
(A.6)

where εi = ∑4
α=1 pα

(
εα
i

)
.

As noted in footnote 7, each column of an energy matrix
can be shifted for a provisional base independent value, and a
convenient choice would be to set εi = 0, so that E = 0 and

χ2 =
L∑

i=1

4∑
α=1

pα

(
εα
i

)2
. (A.7)

From the above equation it follows that χ is equal to
the norm of the energy matrix εα

i , with ‘metric’ given by the
background single base frequencies pα .

We further note that ρ(E) is well approximated by
equation (A.4) in the proximity of maximum E = E, however,
away from the maximum deviations from Gaussianity appear.
In fact, the support of ρ(E) is finite with the ‘bottom of
the band’ ES = ∑

i minα εi,α (while the ‘top’ is given by∑
i maxα εi,α). In this paper, we work with the Gaussian

approximation to ρ(E), but we also introduce a cut in the
distribution to account for the fact that the support ES is finite
(see appendix C).

Further extensions of the TF–DNA interaction model,
necessary for our modeling of SELEX experiments, are given
in appendices B and C.

Appendix B. Non-specific binding of TF to DNA

We here assume that a given TF can bind to DNA in two
conformations. The first conformation results in the sequence
specific interaction, with the interaction energy E(S). The
second conformation results in the sequence independent (non-
specific) interaction, with the interaction energy Ens [2]. Ens

is called the threshold for non-specific binding. We consider
a reversible reaction of binding of the TF to a DNA sequence
S, where TF can bind with S in two conformations. Sequence
specific, and sequence non-specific reactions can, respectively,
be represented by

[TF] + [S] ⇔ [TF − S]s (B.1)

and

[TF] + [S] ⇔ [TF − S]n (B.2)

Here, [TF] is the concentration of free TF, [S] is the
concentration of sequence S that is not in the complex with
protein, while [TF − S]s and [TF − S]n are the concentrations
of TF that is bound to the TF in the sequence specific, and in
the sequence non-specific conformation respectively. In the
equilibrium, the following relations hold:

K exp(E(S)) = [TF][S]

[TF − S]s
(B.3)

K exp(Ens) = [TF][S]

[TF − S]n
. (B.4)

From equations (B.3) and (B.4) we have that the
probability that a sequence S is bound by the TF is given
by

p(S) = [TF − S]s + [TF − S]n
[S] + [TF − S]s + [TF − S]n

= a

b exp(E(S)) + 1
+ cns .

(B.5)

In the equation above,

a = 1

1 + exp(µ − Ens)
(B.6)

b = exp(−µ)[1 + exp(µ − Ens)] (B.7)

and

cns = 1

1 + exp(Ens − µ)
(B.8)

where µ = log([TF]/K). By comparing equation (B.5),
with equation (A.1) the quantity b can be identified as the
‘effective’ fugacity in the presence of non-specific binding.
From equation (B.7) then follows that, non-specific binding,
in principle, shifts µ toward more negative values. In practice,
however, we most often have a case in which the amount
of TF is much less than the amount of DNA. For example,
even for a pleiotropic TF such as CRP in E. coli, the total
number of CRP molecules is much less than the total length
of the genome [41], while in SELEX experiments protein is
typically in large excess over DNA. It is then obvious that µ

has to be significantly below Ens , since all DNA sequences
would, otherwise, have to be bound with high probability.
Therefore, we in practice have that exp(µ−Ens) 	 1, so from
equations (B.6) and (B.7) follows that a ≈ 1, b ≈ exp(−µ)

and cns ≈ exp(−(Ens − µ)), so we have that

p(S) ≈ 1

exp(E(S) − µ) + 1
+ cns . (B.9)

Therefore, the effect of non-specific binding enters
through cns , which is determined by the position of µ relative
to Ens . We note that values of Ens were not experimentally
quantitated [25], so one does not know what range of values
Ens can take. Unless Ens is positioned in the strong binding
tail of ρ(E), non-specific binding will not have a large effect.
As discussed in section 3, non-specific binding is in SELEX
experiments essentially indistinguishable from the background
partitioning effect.
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Appendix C. Binding of TF to a longer DNA
sequence

In appendix A, we derived the binding probability under the
assumption that the length l of DNA sequence is equal to the
length L of the TF binding site. However, for DNA sequences
used in SELEX, l is typically larger than L. For example, in
the SELEX experiment performed by Roulet et al [14] (see
section 3.2) l = 25 bp, while L = 15 bp for CTF/NFI TF. It
is straightforward to obtain that the probability that sequence
with length l will be bound is given by

p(S) = exp(µ)
∑l−L

i=1 exp(−E(si))

1 + exp(µ)
∑l−L

i=1 exp(−E(si))
. (C.1)

In the equation above, the sequences si are L long binding
sites, corresponding to all possible l −L frame shifts in which
the TF can bind to a sequence S, while µ is chemical potential
(see appendix A). We assume that l < 2L, which is typically
the case in SELEX experiments, so that two or more TF
molecules cannot simultaneously bind to the sequence S. Note
that all quantities in equation (C.1) are rescaled by kBT . For
le = l − L that is not too large, which is typically the case
in the experiments, the expression

∑le
i=1 exp(−E(si)) can be

approximated by taking into account only the contribution
from the strongest binding site sM , where EM(S) =
E(sM) = min{E(si), i ∈ (1, le)}. With this approximation,
equation (C.1) simplifies to

p(S) ≈ f (EM(S) − µ) = 1

1 + exp(EM(S) − µ)
(C.2)

which is the Fermi–Dirac probability encountered before (see
appendix A).

From equation (C.2) it follows that binding of a TF to a
sequence S with l > L is (approximately) equivalent to the
binding to the sequence sM with length L. Let us now look
at the first round of SELEX, where the TF is mixed with a
large number of randomly generated sequences of length l. In
order to make the problem equivalent to that in which l = L,
instead of density of states ρ(E) (see appendix A), we have to
use ρM(E) defined as the number of sequences S, for which
EM(S) has energy between E and E + dE.

To calculate ρM(E), we neglect correlations in binding
energies E(si) (see equation (C.1)) of le binding sites that
belong to the same sequence S. This is in general well justified,
unless sequence S consists of the long repeat. In particular, the
validity of this approximation was confirmed by numerically
testing equation (C.4) below. Based on this, ρM(E) can be
calculated by generating sets of le values of E from distribution
ρ(E) and retaining only the strongest binding energy from
each set. It is straightforward to see that ρM(E′) can be
obtained from ρ(E) by

ρM(E′) = le
d	(E′)

dE′ (1 − 	(E′))le−1, (C.3)

where 	(E′) is the cumulative distribution given by 	(E′) =∫ E′

−∞ ρ(E) dE. The expression on the right-hand side of
equation (C.3) is, therefore, equal to the probability that le − 1
values of E generated from ρ(E) are above E′, while one

of them (the strongest binding energy) is between E′ and
E′ − dE′.

By plotting ρM(E), given by equation (C.3) we see that
ρM(E) can be approximated by a Gaussian,

ρM(E) ≈ exp
((

E − Ele

)2/
2χ2

le

)
, (C.4)

with

Ele = E − a(le)χ (C.5)

and

χle = b(le)χ, (C.6)

where E and χ are respectively the mean value and the
standard deviation for ρ(E) (see appendix A), while a(le) and
b(le) are respectively monotonically increasing and decreasing
functions of le. Functions a(le) and b(le) can be calculated
numerically (e.g., a(10) = 1.4 and b(10) = 0.3). Numerical
analysis shows that approximately, a(le) ≈ 0.6 log(le), while
b(le) ≈ 1/

√
le.

Finally, we have to take into account that ρM(E) has the
finite support, where ‘bottom of the band’ ES is determined by
the energy of the strongest binder in the random pool of DNA
sequences, and can be approximated by

(4L)

∫ ES

−∞
ρ(E) dE ∼ 1, (C.7)

where ρ(E) is normalized to 1.
In equation (C.7), we assumed that the total number of

sequences N (more precisely leN) in the DNA pool is larger
than 4L, so that all possible sequences of length L are present.
This is most often the case in practice, since typically L < 20,
while N ∼ 1015 [13], so that 4L 	 N .

To take into account the finite support of ρM(E), we
make a simple approximation and introduce a sharp cut in
the distribution ρM(E), i.e., we take that

ρM(E) ∼ θ(E − Es) exp
((

E − Ele

)2/
2χ2

le

)
, (C.8)

where θ(E − Es) is unit step (Heaviside) function. We note
that the top of the band is finite as well, however we do
not include it in equation (C.8), since energy distribution
of selected oligos moves toward higher binding affinities in
SELEX (see section 3.1). In reality, ρM(E) becomes discrete
when we approach Es , however a simple approximation given
by equation (C.8) is sufficient for the purpose of our model.

Appendix D. High stringency SELEX in the limit of
unsaturated binding

In this appendix, we look at the limit in which the binding
probability f (E − µ) in equations (2) and (3) can be
approximated by the Boltzmann factor exp(µ − E). In
this limit, those equations can be solved analytically. The
above approximation is valid if all selected binding sites are
unsaturated in each SELEX round, i.e., if µ(k) < ES (∀k ∈
(1, . . . , n)), where n is the number of performed SELEX
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rounds. In this limit, equation (2) gives

ρ
(n)
M (E) ∼ (exp(−E) + exp(−Ens))

nρM(E), (D.1)

where, for simplicity of notation, we assume that all
noise comes from non-specific binding, i.e., c ≡ cns (see
equations (1)). If we use the Gaussian approximation for
ρM(E) (see equation (C.4)), from equation (D.1) it follows
that ρ

(n)
M (E) has n peaks, which are centered at positions

E
(n)
m,k = −kχ2

le
, (k ∈ (1, . . . , n)). We here shifted zero of

energy, so that it coincides with Ele (see equation (C.5)).
From equation (D.1) it is obvious that nth peak E

(n)
m,k=n ≡ E(n)

m

contains only sequence specific binding sites, while k = 0 peak
(centered at zero) corresponds exclusively to non-specific (i.e.,
random) binders. Therefore, in the limit considered here, the
maximum of specifically selected binding sites (the leading
maximum) is positioned at

E(n)
m = −nχ2

le
. (D.2)

From equation (D.2) it follows that E(n)
m rapidly moves

to higher binding energies. For example, for the realistic
parameter values of χle = 2 and ES = −5χle (corresponding
to L = 12, see equation (C.7)), E(n)

m reaches ES after (only)
three SELEX rounds.

The ‘intensity’ I
(n)
k of kth peak, i.e., the number of binding

sites corresponding to the peak, is

I
(n)
k ∼ exp(−Ens(n − k))

∫
exp(−Ek)ρM(E)

≈ exp(−Ens(n − k)) exp
(
k2χ2

le

/
2
)
. (D.3)

From equation (D.3) it is straightforward to obtain that
the conditions I

(n)
k > I (n)

n and I
(n)
k > I

(n)
0 cannot be

simultaneously satisfied for k ∈ (2, . . . , n − 1), for any
parameter values. Therefore, for any given n, either zeroth
or nth peak has the maximal intensity. Further, it is sensible to
define ‘signal-to-noise’ ratio ν(n) as the ratio of the number of
specific binders corresponding to the nth peak and the number
of non-specific binders corresponding to the zeroth peak. From
equation (D.3) it follows that

ν(n) = exp
(
n2χ2

le

/
2 + nEns

)
, (D.4)

so the signal-to-noise ratio necessarily increases with
increasing n.

We next derive for what parameter values is the
unsaturated limit, which we analyze in this appendix, valid.
We use the self-consistency condition

µ(j) < ES (∀j ∈ (1, . . . , n)), (D.5)

with µ(j) calculated from equation (3) by using f (E − µ) ≈
exp(µ − E),

exp(µ(j)) = pt/dt

exp
[
(j − 1/2)χ2

le

]
α(j, χle , Ens) + exp(−Ens)

(D.6)

where,

α
(
j, χle , Ens

)
= 1 +

∑j−2
k=0

(
j−1
k

)[
exp(−(k + j + 1)χ2

le

/
2 − Ens

]j−k−1

1 +
∑j−2

k=0

(
j−1
k

)[
exp(−(k + j − 1)χ2

le

/
2 − Ens

]j−k−1 .

(D.7)

We note that the condition (D.5) (with µ(j) given by
equations (D.6) and (D.7)) is satisfied for the subset of
parameter values that are inside the realistic range. For
example, the condition (D.5) holds for pt = 10 nM, dt =
10 µM (see, e.g., [12]), χle = 2, Ens = −2χle , ES = −5χle ,
and for all n until E(n)

m reaches ES (i.e., for n = 1, 2, 3).
We finally discuss how µ(n) depends on the parameter

values (for further discussion, we let j → n in equation (D.6)).
From equation (D.6) it is straightforward to show that
µ(n) necessarily decreases, with increasing n. Further, the
following interpretation can be assigned to the terms on the
right-hand side of equation (D.6). It is obvious that µ(n)

increases, with the increase of (total) protein to (total) DNA
ratio pt/dt . The term exp

[
(n − 1/2)χ2

le

]
accounts for the fact

that the (average) binding energy of sequences corresponding
to the nth peak increases with n (see equation (D.2)), which
results in the decrease of the concentration of free TF and
consequently in the decrease of µ(n). From equation (D.7) it
can be noted that α

(
n, χle , Ens

)
� 1. This term, therefore,

leads to the increase of µ(n), which may be explained by the
fact that for n > 1 there are n−1 peaks of ρ

(n)
M (E) ‘generated’

by non-specific binding. All those peaks have smaller (mean)
binding energy compared to the nth peak, which results
in the smaller amount of the specifically bound TF. Finally,
the term exp(−Ens) accounts for the fact that some amount of
TF is non-specifically bound by DNA sequences, which leads
to the decrease of µ(n). The dependence of µ(n) from Ens

is, therefore, quite complicated, since increase in non-specific
binding decreases µ(n) through exp(−Ens), but increases it
through α

(
n, χle , Ens

)
. Similarly, the increase of χle has the

opposite effects on µ(n) through terms exp
[
(n − 1/2)χ2

le

]
and

α
(
n, χle , Ens

)
.

Appendix E. Maximum of energy distribution in
SELEX with fixed selection stringency

We determine how the position of maximum E(n)
m of ρ

(n)
M (E)

(see equation (4)), changes with the number of performed
SELEX rounds n. We first shift zero of energy to coincide
with Ele (see equations (C.4) and (C.5)). Position of maxima
of ρ

(n)
M (E) is given by

dρ
(n)
M (E)

dE

∣∣∣∣
E=E

(n)
m

= 0. (E.1)

From equation (4) and the equation above, we obtain

[
1 − f

(
E(n)

m − µ
)] = −E(n)

m

nχ2
le

. (E.2)

The equation above can be solved graphically, i.e.,
positions of E(n)

m (for different n) are determined by the
intersections of the family of lines φn(E) = −E

/(
nχ2

le

)
and

the curve [1 − f (E − µ)]. If we approximate f (E − µ) by a
step θ(µ−E) (see the dashed line in figure E1), we obtain that
E(n)

m = −nχ2
le

for n < −µ/χ2
le

and E(n)
m = µ otherwise, which

is shown in figure E1. Correction, accurate up to the next order
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Figure E1. Full lines and dashed lines present 1 − f (E − µ) and
unit step approximation to 1 − f (E − µ) respectively. Dash-dotted
lines present family of lines φn(E) = −E/(nχ 2

le
), which is here

plotted for n = 1, . . . , 4. The parameter values in this figure are
χle = 3.5 and µ = −5χle . Positions of E

(n)

M are determined by the
intersections of dash-dot lines and the solid curve. Note that, for the
parameters we choose, E

(1)

M = −χ 2
le

, while E
(n)

M ≈ µ for n � 2.

in 1
/
χ2

le
can be found by linearizing f (E − µ) around E = µ

(see the dotted line in figure E1). We then obtain

E(n)
m = (µ − 2)

1 + 4
/(

χ2
le
n
) (E.3)

if n > (−µ + 2)
/
χ2

le
, and E(n)

m = −nχ2
le

otherwise. Note
that, for n large enough, i.e., n � 4

/
χ2

le
, E(n)

m → (µ − 2).
Since in SELEX experiments µ is typically positioned in the
tail of the energy distribution of random binders, we expect
µ � 1 (see also the comment below equation (E.3)), so E(n)

m

for n > −µ
/
χ2

le
is well approximated by E(n)

m ≈ µ (see also
figures E1 and 3).

Appendix F. Computing energy matrix from
extracted SELEX sequences

We determine the energy matrix ε̃, and the parameter γ by
maximizing the likelihood function � (see equations (5) and
(6)), subject to the constraints∑

i,α

pαε̃2
i,α = 1 (F.1)

and ∑
α

pαε̃i,α = 0 (∀i). (F.2)

The constraint (F.1) follows from ε̃i,α = εi,α/χ and
χ2 = ∑

i,α pαε2
i,α (see equation (A.6)), while the constraint

(F.2) shifts columns of ε̃i,α (see footnote 7) so that εi = 0
and consequently E = 0 (see equations A.4 and A.5). As
discussed in section 4 and appendix C, we approximate the
binding probability f (E(S) − µ) in � by using the strongest
binding site sM with length L, on each sequence S(S ∈ A) of

length l. To simplify notation, we further, in this appendix,
use sM ≡ s. If we use µ/χ from equation (8), variation of �

with respect to ε̃i,α and γ leads to

∂�

∂ε̃i,α

= −(nχ)
∑
s∈A

[1 − f (E(s) − µ)](si,α − s∗
i,α)

− (nχ)γ

∫
f n(E − µ)[1 − f (E − µ)]ρM(E) dEs∗

i,α

− 2αpαε̃i,α − λpα = 0, (F.3)

∂�

∂γ
= nS

γ
−

∫
f n(E − µ)ρM(E) dE = 0, (F.4)

where α and λ are the Lagrange multipliers associated with the
constraints (F.1) and (F.2) respectively, while ρM(E) is given
by equation (C.4). Eliminating α, λ and γ , using respectively
equations (F.1), (F.2) and (F.4), leads to the equation that
implicitly determines ε̃i,α ,

ε̃i,α =
p
−1
α
ns

∑
s∈A[1 − f (E(s)− µ)](si,α − s∗

i,α) + (s∗
i,α/pα − 1)(1 − ν(n+1))

1
ns

∑
s∈A[1 − f (E(s)− µ)](E(s) − µ) + µ(1 − ν(n+1))

,

(F.5)

where

ν(n+1) =
∫

f n+1(E − µ)ρM(E) dE∫
f n(E − µ)ρM(E) dE

. (F.6)

From equation (2) it can be observed that ν(n+1) is equal
to the fraction of DNA that is in the complex with protein in
the (n + 1)th round of SELEX, when non-specific binding is
small (i.e., n large enough, as discussed in section 4.1).

In practice, we typically do not know the exact value of χ ,
so we fix it to some reasonable value and then (numerically)
solve equation (F.5) with respect to ε̃i,α . We can estimate
the reasonable range of χ values, if we adopt the so-called
‘two state’ model [2], in which (the same) penalty in binding
energy ε0 is assigned for each nucleotide that does not match
the consensus sequence. Since one or two hydrogen bonds
are formed per contact of the TF surface with a preferred
nucleotide (energy of a hydrogen bond is ∼kBT ), ε0 can be
estimated to be (1–3) kBT [25]. From equation (A.6) it follows
that χ ∼ √

Lε0, and with L = 12 for CTF/NFI (we ignore
the contribution of the 3 bp spacer to the binding energy), we
obtain that χ is expected to take values from 3 to 12. Numerical
solutions of equation (F.5) show that for χ in this range, the
quantity ε̃i,α depends weakly on the imposed value of χ . More
precisely, we tested that ε̃i,α , which corresponds to solving
equation (F.5) with (different) values of χ in the indicated
range, leads to negligible differences in energy distribution and
the DET curve for the finite T energy matrix (data now shown),
which justifies solving the equation without the knowledge of
the exact value of χ . The energy matrix ε̃i,α obtained by our
method (corresponding to χ = 5) is given in table F1.

Finally, we use table F1 to discuss the differences
between the weight matrix parameters estimated by the
three different methods. In figure F1(A) histograms of
energy levels corresponding to the finite T energy matrix
and to the information-theoretic weight matrix are shown
together. Similarly figure F1(B) compares the matrix
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Figure F1. Comparison of the finite T matrix elements with (A) the information theory weight matrix and (B) the MatInspector matrix
elements. CTF/NFI binds DNA as a homodimer, and recognizes two 6 bp long palindrome symmetric motifs, separated by a 3 bp
spacer. Consequently, matrices in table F1 were appropriately symmetrized and only the first six positions are shown. Four bars at each
position on the horizontal axis correspond to A, T, C and G respectively, while heights of the bars correspond to the values of the matrix
elements.

Table F1. (a) The finite T energy matrix for CTF/NFI transcription factor. (b) The information-theoretic weight matrix. (c) The
MatInspector weight matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Finite T energy matrix
A 0.13 0.23 0.24 0.13 −0.07 −0.16 0.03 0.02 0.00 0.05 0.18 0.19 0.24 −0.54 −0.31
T −0.29 −0.54 0.24 0.23 0.18 0.01 −0.02 0.02 0.03 −0.17 −0.07 0.21 0.24 0.22 0.15
C −0.04 0.20 0.24 0.24 −0.32 0.07 −0.03 0.00 0.03 0.07 0.21 −0.64 −0.72 0.13 0.21
G 0.20 0.11 −0.72 −0.61 0.21 0.09 0.02 −0.04 −0.06 0.04 −0.33 0.24 0.24 0.19 −0.05

(b) Information-theoretic weight matrix
A 0.07 0.28 0.26 −0.15 −0.15 −0.11 0.04 0.04 0.01 0.01 0.18 −0.02 0.26 −0.39 −0.23
T −0.22 −0.40 0.26 0.23 0.21 0.02 −0.03 0.02 −0.01 −0.11 −0.12 0.08 0.26 0.29 0.07
C −0.05 0.18 0.26 0.49 −0.25 0.05 −0.01 −0.01 0.03 0.07 0.21 −0.55 −0.79 −0.04 0.26
G 0.20 −0.05 −0.79 −0.56 0.19 0.04 0.00 −0.04 −0.03 0.03 −0.27 0.50 0.26 0.15 −0.10

(c) MatInspector weight matrix
A 0.06 0.19 0.29 0.16 −0.03 −0.04 0.01 0.01 0.00 0.01 0.11 0.21 0.29 −0.48 −0.16
T −0.16 −0.50 0.29 0.23 0.11 0.01 −0.01 0.01 0.00 −0.05 −0.01 0.23 0.29 0.19 0.07
C 0.01 0.18 0.29 0.23 −0.18 0.02 0.00 0.00 0.01 0.02 0.11 −0.69 −0.86 0.12 0.10
G 0.09 0.12 −0.86 −0.63 0.10 0.02 0.00 −0.01 −0.01 0.02 −0.21 0.25 0.29 0.17 −0.01

parameters corresponding to the finite T energy matrix
and the MatInspector weight matrix. The figure directly
indicates which parameters are most different between the two
matrices. For example, there is ∼150% difference between the

information-theoretic and our matrix at position 2G, ∼100%
difference at positions 4C and 5A, etc. Similarly, comparison
with the MatInspector weight matrix in figure F1(B) shows
that there are significant differences (from 40% to 100%)
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between the two matrices at positions 1, 5 and 6 while
the matrices mostly agree with each other at positions 2,
3 and 4. Since positions 2, 3 and 4 contribute more to
the binding energy than positions 1, 5 and 6, the smaller
difference between the DET curves of the finite T and the
MatInspector matrices (as compared to the difference between
the finite T and the information theory DET curves) can be
attributed to the localization of the matrix differences at the
less conserved positions. We note that, while the differences
between the individual matrix elements are generally not very
large, when binding site scores are calculated the individual
differences add up to produce significant differences in, for
example, the false positive/false negative trade-off shown in
figure 5.
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