Related content

Quantitative modeling and data analysis of SELEX experiments

To cite this article: Marko Djordjevic and Anirvan M Sengupta 2005 Phys. Biol. 313

View the article online for updates and enhancements.

Transcription factor concentrations versus binding site affinities in the yeast S. cerevisiae
Erik Aurell, Aymeric Fouquier d'Hérouël, Claes Malmnäs et al.

- Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively Jacob Clifford and Christoph Adami
- Classes of fast and specific search mechanisms for proteins on DNA M Sheinman, O Bénichou, Y Kafri et al.

Recent citations

ESTIMATES FROM EVOLUTIONARY ALGORITHMS THEORY APPLIED TO DIRECTED EVOLUTION A. V. Eremeev and A. V. Spirov

- Modeling SELEX for regulatory regions using Royal Road and Royal Staircase fitness functions
Anton V. Eremeev and Alexander V. Spirov
- Steven Schulz et al

IOP ebooks"

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Quantitative modeling and data analysis of SELEX experiments

Marko Djordjevic ${ }^{1,2}$ and Anirvan M Sengupta ${ }^{3}$
${ }^{1}$ Department of Physics, Columbia University, New York, NY 10027, USA
${ }^{2}$ Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA
${ }^{3}$ Department of Physics and BioMaPS Institute, Rutgers University, Piscataway, NJ 08854, USA
E-mail: mdjordjevic@math.ohio-state.edu
Received 10 August 2005
Accepted for publication 21 November 2005
Published 16 December 2005
Online at stacks.iop.org/PhysBio/3/13

Abstract

SELEX (systematic evolution of ligands by exponential enrichment) is an experimental procedure that allows the extraction, from an initially random pool of DNA, of those oligomers with high affinity for a given DNA-binding protein. We address what is a suitable experimental and computational procedure to infer parameters of transcription factor-DNA interaction from SELEX experiments. To answer this, we use a biophysical model of transcription factor-DNA interactions to quantitatively model SELEX. We show that a standard procedure is unsuitable for obtaining accurate interaction parameters. However, we theoretically show that a modified experiment in which chemical potential is fixed through different rounds of the experiment allows robust generation of an appropriate dataset. Based on our quantitative model, we propose a novel bioinformatic method of data analysis for such a modified experiment and apply it to extract the interaction parameters for a mammalian transcription factor CTF/NFI. From a practical point of view, our method results in a significantly improved false positive/false negative trade-off, as compared to both the standard information theory based method and a widely used empirically formulated procedure.

1. Introduction

One of the most important issues in molecular biology is to understand regulatory mechanisms that control gene expression. Gene expression is often regulated by proteins, called transcription factors (TFs), which bind to short (6 to 20 base pairs) segments of DNA [1]. To understand a regulatory system one needs a detailed knowledge of both TFs and their binding sites in a genome. Binding sites of a given TF share a common sequence pattern [2], which is often represented by a consensus sequence. However, TF binding sites are often highly degenerate, so it is not possible to reliably detect TF binding sites in a genome by using just the consensus sequence [3]. As an alternative, position-weight matrices (PWMs) [2, 4, 5] have been used to search for TF binding sites, with demonstrable advantage over consensus sequence based methods [3].

The most widely used method to construct a PWM originates from information-theoretic considerations [5, 6].

To distinguish such weight matrices from those constructed by other methods, we will further call them informationtheoretic weight matrices (see also [7]). To build these weight matrices, one usually starts from a known collection of aligned binding sites and calculates the corresponding matrix elements as the logarithm of the ratio of probability to observe a given base at a given position in a collection of binding sites, compared to the probability of observing the base in the genome as a whole [3]. However, despite the obvious advantages of using such PWMs over the consensus sequence, the majority of PWMs provide a low level of both sensitivity and specificity [8]. In particular, there tend to be a large number of false positives in searches using most PWMs $[3,8,9]$.

In general, two problems may lead to the low sensitivity and specificity of PWMs. First, the information-theoretic method may not be the most appropriate one. It does not properly incorporate saturation in binding probability, as shown by [7], and an alternative method of weight matrix
construction ${ }^{4}$, based on the biophysical model of TF-DNA interaction, was developed. This method reduced the number of false positives and resulted in the explicit appearance-and determination-of the binding threshold. Additionally, there are probably problems with the collection of binding sites used to construct the weight (energy) matrix [8] because, first, the collection of binding sites is most often obtained from a database, and is likely to be assembled under diverse and illcharacterized conditions [7]. Second, for most TFs, only a few binding sites are available [10, 11], making the amount of data insufficient for determining parameters of TF-DNA interaction (i.e., weight matrix).

As an alternative to using binding sites assembled in biological databases, SELEX (systematic evolution of ligands by exponential enrichment) experiments [12, 13] can be suitable for generating an appropriate dataset under controlled (uniform) conditions. Additionally, a recent experimental advance [14] which combines SELEX with SAGE (serial analysis of gene expression) [15], allows an efficient generation of a large number of binding sites for a given TF. In this paper, we ask the following question: What is an appropriate experimental and computational procedure for inferring parameters of TF-DNA interaction from SELEX experiments? In particular, we will address the following two issues: (1) How should SELEX experiments be designed in order to generate a dataset suitable for determining parameters of TF-DNA interactions? (2) How should a correct analysis of data from a suitable experiment be done? To address these questions, we will use a biophysical model of TF-DNA interactions to quantitatively model SELEX experiments. We will incorporate this model in the novel bioinformatic method of data analysis that we will subsequently develop.

The outline of this paper is as follows. In section 2, we will review SELEX experiments and point to the potential problems in the experimental procedure from the viewpoint of constructing the appropriate weight matrix. In section 3 we will quantitatively model the SELEX experiments. Based on this model, we will show that there is a range of experimental parameters for which the energy matrix cannot be inferred by using the standard SELEX procedure. However, we will show that a modified experiment allows a robust generation of the appropriate dataset. In section 4 we will propose a novel bioinformatic method of data analysis for modified SELEX experiments, and apply it to the data obtained in the experiment by Roulet et al [14]. In section 4.2 we will show that our method leads to a significant improvement in the false positive/false negative trade-off compared to the standard methods of data analysis. Quantitative analysis that supports sections 3 and 4 is presented in appendices B-F. Finally, in section 5 we will summarize our results, compare them with some widely held views and put our work in the context of future research.

[^0]

Figure 1. Scheme of the SELEX experiment procedure. After n cycles of protein binding, selection and amplification, a certain number of DNA sequences are extracted and sequenced. Note that ds-DNA stands for double-stranded DNA.

2. From SELEX to weight matrix

SELEX is a method in which a large number of oligonucleotides (DNA, RNA or unnatural compounds) can be rapidly screened for specific sequences that have high binding affinities and specificities toward the given protein target [12]. For an explanation of the applications of SELEX procedure, one should refer to some of the review papers [13, 16].

The scheme of the widely used SELEX experiment procedure is shown in figure 1. The experiment is usually performed as follows. In the first step, a library of random oligonucleotides is synthesized. Protein is then mixed with the oligonucleotides library. Oligonucleotides that are bound by proteins are then separated from those that are not bound (e.g., by gel shift), which is called the selection step. Selected oligonucleotides are then amplified by the polymerase chain reaction (PCR) [17], which is called the amplification step. One cycle of TF binding, selection and amplification is called a SELEX round. The SELEX rounds are repeated several times [12, 13], and some number of sequences (typically from 20 to 50) are extracted and sequenced from the final round. This procedure is successful in identifying the strongest binding sites in the initial pool of random sequences, as demonstrated by experiments reported in the literature (e.g., [12]), as well as by the numerical studies $[18,19]$. We will further call the widely used experimental procedure described above the high stringency SELEX, for reasons that will become apparent later. Next, in a typical data analysis the sequences selected in the last round of SELEX are used as a training set, from which elements of the information-theoretic weight matrix for a given TF are constructed [20,21]. This weight matrix can then, in principle, be used to search for TF binding sites in a genome.

Is the standard experimental and data analysis procedure outlined above really suitable for successfully inferring a correct weight matrix? Looking at the literature, it appears that this procedure often fails in practice. For example, in the SELEX experiment performed by Cui et al [21], around 50 binding sites for LRP TF, selected in the last SELEX round, were extracted and sequenced. Binding sites were then used to construct an information-theoretic weight matrix, and the binding dissociation constants of the extracted sequences were then experimentally measured. However, the correlation between the dissociation constants and the information scores (i.e., the weight matrix scores) was quite poor, and accordingly,

Cui et al [21] comment that "the poor correlation for the data described here seems surprising...". Further, in [9] a comprehensive comparison between the weight matrices obtained from the eight available SELEX experiments with E. coli TFs and the corresponding weight matrices constructed from natural binding sites was performed. In seven out of these eight cases, large discrepancies between the matrices derived from natural sites and those derived from SELEX were reported. Therefore, obtaining good weight matrices from the standard SELEX procedure appears to be more an exception than a rule.

Why does the procedure described above appear to fail in many cases? The first possibility is that the assumption of additivity in TF-DNA interactions [22], on which the weight matrix representation is based, may not be suitable. This is, however, not likely, since this approximation has proved to be very good in many cases [20, 22-24]. Alternatively, the reason for the failure might be that the analysis was done using the information theory based method. As discussed in the introduction, the information theory based procedure does not properly incorporate saturation in binding probability. Therefore, it is not surprising that this is not the most appropriate method for correctly inferring the energy matrix. In this paper, we will develop a method of data analysis based on the biophysical model of protein-DNA interactions.

However, it seems rather surprising that the information theory based method is the only reason for the apparent problems with the weight matrices inferred from SELEX discussed above. There may be a systematic problem with the high stringency SELEX procedure when it comes to generating a dataset suitable for inferring weight/energy matrices. With regard to this, it is apparent that two possible problems may arise. First, it may be that the noise in the dataset is too large, i.e., many of the extracted sequences are too weak or are nonspecific binders (for a discussion on non-specific binding, see appendix B). Second, if the extracted sequences consist of only the strongest binding sites, the inferred weight matrix elements will come with large errors. To observe this, it is useful to take the limit in which only the sequence corresponding to the consensus binding site is extracted, where it is obvious that the energy matrix cannot be obtained from such information. For a more detailed statistical analysis of this issue, refer to [14]. Therefore, our first goal is to address possible systematic problems with the experimental procedure by quantitatively modeling the SELEX experiments. We also incorporate this model in the bioinformatic method of data analysis that we develop in section 4.

3. A quantitative model of SELEX

Our model of SELEX is based on the biophysical view of TF-DNA interactions, which has been used in a few recent papers (see, e.g., [7, 25, 26]). For completeness and to introduce the notation, we briefly review a biophysical model of TF-DNA interaction in appendix A. We start this section by extending this model in several ways, so as to make it suitable for the modeling of SELEX.

First, we take into account non-specific binding of a TF to DNA. As we show in appendix B, the binding probability (equation (A.1)) is (approximately) modified in the following way due to the non-specific binding (see equations (B.5) and (B.9)),
$p(S) \approx \frac{1}{\exp (E(S)-\mu)+1}+c_{n s}=f(E(S)-\mu)+c_{n s}$,
where $E(S)$ is binding (free) energy ${ }^{5}$ of TF to a DNA sequence S, μ is chemical potential (see appendix A), while $c_{n s}$ depends on the threshold of non-specific binding $E_{n s}$ (see equation (B.8)). Note that we scale all energies with $k_{B} T$. From equation (1) it follows that non-specific binding cannot be distinguished from the so-called background partitioning. Background partitioning [12] is an effect that, during the selection step (section 2), it is not possible to perfectly separate sequences that are bound by protein from those that are not bound. Due to that, in each round of SELEX, some DNA sequences not bound by TF are also selected with probability c_{b}. A combined effect of non-specific binding and background partitioning can be described by equation (1), where $c_{n s} \rightarrow$ $c_{n s}+c_{b}$ (further in the text, we denote $c=c_{n s}+c_{b}$). Although c itself is likely to be small (e.g., $c_{b} \sim 0.1 \%$ in [12]), the effect of non-specific binding/background partitioning can be considerable, since in SELEX experiments there is typically a large excess of DNA over protein, so only a small fraction of all DNA sequences are typically (specifically) bound by TFs.

Second, we take into account that the length of DNA sequences in SELEX experiments is usually larger than the length of the TF binding site. For example, in the experiment by Roulet et al [14], which will be the subject of our analysis in section 4, the sequence length is $l=25 \mathrm{bp}$ long, while the length of the binding site for CTF/NFI TF, studied in the experiment, is $L=15 \mathrm{bp}$. In appendix C we discuss the modification of the binding probability due to the fact that l is greater than L. We show that this effect can be approximately accounted for by modifying the distribution of binding energies from $\rho(E)$ (see equation (A.4)) to $\rho_{M}(E)$ given by equation (C.4). Additionally, we note that the model has to take into account that the support E_{S} of the energy distribution is finite (see equation (C.7)), with 'bottom of the band' determined by the energy of the strongest binder in the pool of random DNA sequences.

We note that we neglect stochastic effects in our model. This is generally justified by the fact that the typical length L of a TF binding site is 20 bp or less, while the total number of sequences used in SELEX is typically $N \sim 10^{15}$ [13], so each possible DNA sequence of length L is present in about $N / 4^{L} \sim 10^{3}$ copies. Additionally, we note that high fidelity DNA polymerase is used in SELEX experiments, so mutations of sequences during the PCR amplification can generally be neglected. In that respect, SELEX is different from the socalled in vitro evolution experiments [27, 28], where reduced fidelity DNA polymerase and a larger number of PCR rounds are used to (purposefully) introduce mutations and generate strong binding sequences that do not exist in the initial, small ($N \sim 10^{5}$), random DNA pool.

[^1]
3.1. High stringency SELEX

In this subsection, we model the high stringency SELEX procedure, based on the (extended) model of TF-DNA interactions described above. We introduce equations that allow us to determine the position of chemical potential $\mu^{(n)}$ and energy distribution of selected oligos $\rho_{M}^{(n)}(E)$, as a function of the number of performed SELEX rounds n,

$$
\begin{equation*}
\rho_{M}^{(n)}(E) \sim\left[f\left(E-\mu^{(n)}\right)+c\right] \rho_{M}^{(n-1)}(E) \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
p_{t}= & p_{f}^{(n)}+p_{b}^{(n)}=K \exp \left(\mu^{(n)}\right)+\int \rho_{M}^{(n-1)}(E) \\
& \times f\left(E-\mu^{(n)}\right) \mathrm{d} E+d_{t} \exp \left(\mu^{(n)}-E_{n s}\right) \tag{3}
\end{align*}
$$

In the equations above, $p_{t}, p_{f}^{(n)}$ and $p_{b}^{(n)}$ are respectively total, free and bound concentrations of protein and d_{t} is the total amount of DNA. K is a multiplicative constant introduced by equation (A.2). Equation (2) connects energy distributions of selected sequences from nth and $(n-1)$ th round. Equation (3) is the mass conservation law, and it determines the position of $\mu^{(n)} \cdot \rho_{M}^{(n-1)}(E)$ in equation (3) is normalized to d_{t}. Note that all energies are rescaled by $k_{B} T$. The equations above are solved recursively, i.e., we first solve them for $n=1$, then increase n by 1 etc. Note that $\rho_{M}^{(0)}(E)$ is $\rho_{M}(E)$ given by equation (C.4) (appendix C). We also note that, since in SELEX experiments there is typically a (large) excess of DNA over protein $\left(d_{t} \gg p_{t}\right)$, most of the protein is bound to DNA and $p_{f}^{(n)}$ (i.e., $K \exp \left(\mu^{(n)}\right)$ term in equation (3)) can be neglected compared to $p_{b}^{(n)}$.

In general, equations (2) and (3) have to be solved numerically; however, the main features can be understood qualitatively. Let us assume that the total amount of protein and the total amount of DNA (after each amplification step) are kept constant in each round of the experiment (as, e.g., in [12]). It is evident that as n increases, the (average) affinity of selected oligos will also increase, which leads to the increase in the amount of $p_{b}^{(n)}$ and decrease of $p_{f}^{(n)}$. Therefore, both $\mu^{(n)}$ (note that $\mu^{(n)}=\log \left(p_{f}^{(n)} / K\right)$) and the maximum $E_{m}^{(n)}$ of energy distribution $\rho_{M}^{(n)}(E)$ move to stronger binding energies with the increase in the number of performed SELEX rounds. (Many experiments are performed in a way that the total amount of protein $p_{t} \equiv p_{t}^{(n)}$ is decreased from one SELEX round to the next (e.g., see [29]). It is evident that the previous conclusion about the decrease of $\mu^{(n)}$ holds in this case as well.) A limit in which equations (2) and (3) can be solved analytically is analyzed in appendix D. In particular, equations (D.2) and (D.6) quantitatively support the discussion above.

In further analysis, we take the following values of parameters: $\chi_{l_{e}}=4 k_{B} T$ (see appendix C), $p_{t}=10 \mathrm{nM}$, $d_{t}=10 \mu \mathrm{M}$ and $E_{S}=-4.3 \chi_{l_{e}}$, while $E_{n s}=-2.0 \chi_{l_{e}}$ (see appendix B). The assumed values of p_{t} and d_{t} are typical for SELEX experiments [12], while (typical) $L \in\{6, \ldots, 20\}$ bp (base pairs) leads to E_{S} in the interval from $-3.5 \chi_{l_{e}}$ to $-7 \chi_{l_{e}}$ (see equation (C.7)). Values of $\chi_{l_{e}}$ and $E_{n s}$ are expected to differ from one TF to the other, but the assumed values are likely inside the realistic range [25]. Figure 2 shows $\rho_{M}^{(n)}(E)$ numerically obtained from equations (2) and (3), with

Figure 2. Change of $\rho_{M}^{(n)}(E)$ for a different number of performed rounds n, for a high stringency SELEX experiment. Peaks centered around zero correspond to random DNA binders, while the left-hand corner of the figure corresponds to the highest affinity binder.
the parameter values stated above. It is useful to observe how the signal-to-noise ratio changes with n, where the noise is the number of selected random binders (corresponding to peaks centered around zero), while the signal is the number of selected specific binders (for signal-to-noise ratio in the limit of unsaturated binding, see appendix D and equation (D.4)). For $n=1$, we see that there is a small number of specific binders (note the small peak centered at $E / \chi_{l_{e}} \approx-3.5$) compared to the number of selected random sequences, so that the signal-to-noise ratio is low. Because of the high noise-to-signal ratio, it is not possible to infer (correct) energy matrix from such a dataset. For $n=2$, random binders are completely eliminated, so the problem with noise does not exist anymore. However, another problem emerges, i.e., since energy distribution of selected oligos has reached support E_{S}, (only) the strongest binding sites are selected. As discussed in section 2 , a correct energy matrix cannot be obtained from such a sequence set. For $n=3$, we select the sequence set with even stronger binding affinities, etc. We note that the sharp cuts in distributions $\rho^{(n)}(E)$ at E_{S} (see figure 2) are the consequence of the approximation that we use for $\rho_{M}^{(0)}(E)$ (see equation (C.8)). In reality, $\rho_{M}^{(n)}(E)$ becomes discrete when one approaches E_{S}, which obviously does not change the conclusions inferred from figure 2.

We solved equations (2) and (3) for different parameter values. As shown by the example above, for a range of realistic parameter values the appropriate choice for the total number of performed rounds n does not exist ${ }^{6}$. On the other hand, for some (other) parameters, for which selected DNA sequences have an acceptable signal-to-noise ratio and $E_{m}^{(n)}$ does not reach the highest affinity binders, the optimal choice of n does exist. However, we note that, in practice, it is very

[^2]

Figure 3. Change of $\rho_{M}^{(n)}(E)$ for different numbers of performed rounds n, for a SELEX experiment in which the chemical potential μ is fixed. Note that once the maximum of $\rho_{M}^{(n)}(E)$ reaches μ, it further moves very slowly toward the higher binding affinities. $\mu=-3.1 \chi_{l_{e}}$, while the other parameters are the same as in figure 2 .
hard to reliably predict such n, i.e., to decide when to stop the experiment, because a studied TF has a priori unknown binding parameters (i.e., $\chi_{l_{e}}$ and $E_{n s}$). Therefore, even in the case when the appropriate choice of n exists, it cannot, in practice, be simply calculated from equations (2) and (3). From this, it follows that the high stringency SELEX procedure is, in practice, unsuitable for inferring the parameters of TFDNA interaction. In the next section, we discuss modification of the SELEX procedure that allows a robust generation of the appropriate set of binding sequences.

3.2. SELEX with fixed selection stringency

Let us now assume that instead of moving toward the stronger binding energies, the chemical potential $\mu^{(n)}=\mu$ is constant in each round of the experiment. In such a case, from equation (2) it follows that the energy distribution is given by the following (simple) expression:

$$
\begin{equation*}
\rho_{M}^{(n)}(E) \sim f^{n}(E-\mu) \rho_{M}^{(0)}(E) \tag{4}
\end{equation*}
$$

As we show in appendix E, from equation (4) it follows that $E_{m}^{(n)}=\bar{E}_{l_{e}}-n \chi_{l_{e}}^{2}$ in the first rounds of experiment, when $n<\left(\bar{E}_{l_{e}}-\mu\right) /\left(\chi_{l_{e}}\right)^{2}$. Thus, in the first few rounds, the maximum of energy distribution $E_{m}^{(n)}$ rapidly moves to the higher affinities. However, once $E_{m}^{(n)}$ reaches μ, it further drifts very slowly toward stronger binding energies (equation (E.3)). Figure 3 is equivalent to figure 2 with the difference that $\mu^{(n)}=\mu$ is fixed throughout the experiment. We see that for $n=1$, we have the same situation as in the high stringency experiment, i.e., the signal-to-noise ratio is too low. For $n=2$, non-specific binders are eliminated, similarly as in the high stringency experiment. However, the important difference is that instead of reaching the strongest binders (i.e., $\left.E_{S}\right), E_{m}^{(2)}$ is close to μ. For $n>2, E_{m}^{(n)}$ drifts very slowly toward the higher binding energies, remaining in the proximity of μ, and
consequently does not reach E_{S}. More precisely, in appendix E we show that $E_{m}^{(n)}$ asymptotically approaches $\mu-2 k_{B} T$.

The procedure described above has a significant practical advantage compared to the high stringency experiment discussed in the previous subsection. Since $E_{m}^{(n)}$ remains essentially fixed for larger n, one can perform more rounds (say 4 or 5), thus being sure that random binders are eliminated, without the risk that only the strongest sequences will be selected. Since the procedure tolerates the whole range of n (in the above example $n \geqslant 2$), we call it robust.

The next issue is how the constraint of fixed chemical potential can be experimentally implemented. To our knowledge, all but one of the performed experiments correspond to high stringency SELEX. However, in the experiment done by Roulet et al [14], the SELEX experiment was modified by inclusion of the radiolabeled sequence (probe) of moderate binding affinity E^{*}. The concentration of the DNA, added to the reaction mixture as a competitor to the radiolabeled probe, was in each round adjusted, so that a fixed fraction of the probe is bound by CTF/NFI TF in each SELEX round. From this it follows that $f\left(E^{*}-\mu^{(n)}\right)=$ const, leading to $\mu^{(n)}=$ const. Therefore the procedure in [14], provides a practical solution for fixing chemical potential through different rounds of experiment.

We also note that the analysis above gives a practical criterion at what n the experiment should stop. The procedure can be completed when random binders are eliminated and $E_{m}^{(n)}$ has reached μ, at which point we have a 'quasi-saturation' (see figure 3 and equation (E.3)). Since at quasi-saturation the total amount of DNA (adjusted and directly observed by experimentalists) ceases to significantly change from one round to the next, this gives a practical criterion at what n the experiment should end.

4. SELEX data analysis

In this section, we present a bioinformatic method for the data analysis of fixed stringency ($\mu=$ const) SELEX experiments. We will first briefly present the basic idea behind our method. We will then introduce our novel algorithm for constructing an energy matrix in section 4.1 . In section 4.2 we will apply the algorithm to the experimental data, and compare the results with both the information theory based method and a widely used empirically formulated procedure, MatInspector [30].

Figure 3 and appendix E show that the maximum of energy distribution for oligos selected in the final rounds of SELEX has to be in the vicinity of the chemical potential. It follows that the majority of sequences extracted from SELEX are in the saturated regime, i.e., bound with the probability close to 1 (see appendix A). In [7] we showed that the information theory method is appropriate to use when sequences are in the unsaturated regime, but that this method does not properly incorporate saturation in the binding probability. In the context of SELEX experiments considered here, the information theory based method would be appropriate to use only if the majority of oligos were in the exponential tail of the binding probability $f(E-\mu)$. Since this does not happen in the fixed stringency SELEX experiments, we will, in this
section, devise a method which uses the correct binding probability. Additionally, as described in section 3 and appendix C, we have extended a biophysical model of TFDNA interactions to take into account that the length of a TF binding site is typically shorter than the lengths of DNA sequences in SELEX, which we will also incorporate into our new procedure.

A key point in the implementation of our method will be to obtain TF-DNA interaction parameters through a maximum likelihood procedure. We will infer the initially unknown parameters by maximizing the probability that the extracted set of DNA sequences is observed as the outcome of the experiment. The probability of extracting the given set of DNA sequences will be calculated by taking into account the correct TF-DNA binding probability (which properly describes the saturation effects) and by appropriately modifying affinity distribution of DNA oligos to account for difference in lengths between TF binding sites and SELEX DNA sequences. The set of equations resulting from varying this probability with respect to the unknown parameters will then be numerically solved to compute the elements of the energy matrix.

4.1. Estimating the energy matrix

In this subsection, we introduce a novel algorithm appropriate for data analysis of fixed stringency SELEX experiments. Let us assume that after n rounds of SELEX, set A, which contains n_{S} sequences $S^{(j)}\left(j \in\left(1, \ldots, n_{S}\right)\right)$, has been extracted and sequenced. As summarized above, we will infer the unknown energy matrix by the maximum likelihood procedure. The probability of observing sequences from set A, but no other sequences from the initial DNA pool, is given by

$$
\begin{equation*}
\exp (\Lambda)=\prod_{S \in A} \gamma f^{n}(E(S)-\mu) \prod_{S^{\prime} \notin A}\left[1-\gamma f^{n}\left(E\left(S^{\prime}\right)-\mu\right)\right] \tag{5}
\end{equation*}
$$

Terms f^{n} in the equation above account for n selection processes. The factor γ is a 'sampling probability' and it absorbs all extraction and amplification events (there are n of them), as well as the final sequencing after the nth round. Probabilities of extraction, amplification and sequencing are all assumed to be independent of sequence S, so γ does not depend on S either. We also note that we have neglected non-specific binding/background partitioning in equation (5), since we assume that n in equation (5) is large enough, so that non-specific binders are eliminated by the nth round (see figure 3). Further, the sum over unbound sequences S^{\prime} can be approximated in terms of the binding energy distribution:

$$
\begin{align*}
& \prod_{S^{\prime} \notin A}\left[1-\gamma f^{n}\left(E\left(S^{\prime}\right)-\mu\right)\right] \approx \exp \left[-\gamma \sum_{S^{\prime} \notin A} f^{n}\left(E\left(S^{\prime}\right)-\mu\right)\right] \\
& \quad \approx \exp \left[-\gamma \int \rho_{M}(E) f^{n}(E-\mu) \mathrm{d} E\right] \tag{6}
\end{align*}
$$

In the above equation, we use $\rho_{M}(E)$ (see equation (C.4)) instead of $\rho(E)$ (see equation (A.4)) to account for the fact that the length of used DNA sequences is typically larger than the length of the TF binding site (see appendix C). Similarly,
we approximate $f(E(S)-\mu)$ in the first term of equation (5) by $f\left(E\left(s_{M}\right)-\mu\right)$ (see appendix C), where s_{M} is the TF binding site of length L, with the maximal binding energy on l long sequence S. In practice, the set of binding sites s_{M} can be identified by an unsupervised search of the set of sequences S for L long statistically overrepresented motifs (e.g., by using the Gibbs search algorithm [31]). We also note that in the first (approximate) equality in (6), we used $\gamma \ll 1$, which is justified by the fact that the number of DNA sequences with binding energies below μ is typically much larger than the number of sequences n_{S} extracted from the last round of the experiment. For example, if we assume $\mu=-3 \chi_{l_{e}}$ (as in figure 3), $n_{S} \sim 10^{3}$ [14] and typical $N \sim 10^{15}$ [13], we have $\gamma=n_{S} /\left[\int f^{n}(E-\mu) \rho_{M}(E) \mathrm{d} E\right] \sim 10^{-9}$.

Since changing the overall scale of energy corresponds to multiplying energy scores for all binding sites with the (same) constant, for bioinformatic purposes, i.e., for TF binding site identification, it is not necessary to determine the overall scale of energy (see also [7]). The natural quantity to scale all energies is width χ (in units of $k_{B} T$) of energy distribution for an ensemble of random oligos of length L (see [7] as well as equations (A.4)-(A.6) in appendix A). With such scaling, and provided that zero of energy is set to coincide with the mean \bar{E} of energy distribution in the ensemble of random sequences (see equation (A.5) in appendix A), $E(S) / \chi$ directly gives the estimate of significance of the given energy score. That is, the probability that a random DNA sequence will have a stronger binding energy than $E(S) / \chi$ is given by

$$
\begin{align*}
& \int_{-\infty}^{E(S) / x} \rho(E) \mathrm{d} E \approx \frac{1}{2}\left[1-\operatorname{erf}\left(-\frac{E(S) / \chi}{\sqrt{2}}\right)\right] \\
& \quad \sim \exp \left(-E(S)^{2} /\left(2 \chi^{2}\right)\right) \tag{7}
\end{align*}
$$

Here $\rho(E)$ is the energy distribution for the set of random oligos (equation (A.4) in appendix A), $\operatorname{erf}(x)$ is the error function, and the last approximation is valid for $|E(S) / \chi| \gg 1$. Also note that if we consider the energy matrix as a vector in $4 L$-dimensional space, χ is equal to the norm of this vector (see equation (A.7) in appendix A), so rescaling with χ corresponds to normalizing the energy matrix to unit 'length'. We further use the notation $\widetilde{\epsilon}_{i, \alpha}=\epsilon_{i, \alpha} / \chi$.

Additionally, since maximum $E_{m}^{(n)}$ (i.e., the mean within the Gaussian approximation of $\left.\rho_{M}^{(n)}(E)\right)$ has to be close to μ (see section 3.2 and figure 3), we impose the constraint that

$$
\begin{equation*}
\mu / \chi=\sum_{S \in A} E(S) /\left(n_{S} \chi\right)=\sum_{i, \alpha} \widetilde{\epsilon}_{i, \alpha} S_{i, \alpha}^{*} \tag{8}
\end{equation*}
$$

where $S_{i, \alpha}^{*}=\sum_{j} S_{i, \alpha}^{(j)} / n_{S}$. In order to obtain $\tilde{\epsilon}_{i, \alpha}$ we maximize Λ (defined by equations (5), (6) and (8)) with respect to $\widetilde{\epsilon}_{i, \alpha}$ and γ. Variation of Λ with respect to $\widetilde{\epsilon}_{i, \alpha}$ and γ then leads to the set of equations which are given in appendix F . Those equations can be numerically solved to obtain $\widetilde{\epsilon}_{i, \alpha}$.

4.2. Application of the algorithm

To demonstrate our method, we use it to analyze the data from the experiment by Roulet et al [14]. In addition to the modification discussed in section 3.2, Roulet et al combined SELEX with the SAGE protocol [15], which allowed them to

Figure 4. Energy distributions obtained by using the finite T energy matrix, the information-theoretic weight matrix and the MatInspector weight matrix are compared. Energy distributions are computed for more than 6000 binding sites extracted from the third round of SELEX [14]. Zero on the horizontal axis corresponds to the mean value of binding energy in a random ensemble. Note that the maximum of energy distribution for non-specific binders is displaced relative to zero (i.e., positioned at around -1.5), caused by the fact that the length of the DNA sequences (25 bp) is larger than the length of the CTF/NFI TF binding site (15 bp). Actually, the energy distribution of non-specific binders matches well with $\rho_{M}(E)$ calculated in appendix F (equation (C.4)).
sequence a large number of DNA oligos. A large dataset provides an obvious advantage for a precise estimation of energy parameters. In particular, a total of four SELEX rounds were performed, and approximately $880,960,1200,6900$ and 230 sequences were obtained from rounds $0,1,2,3$ and 4 respectively (note that round 0 refers to the initial, completely random, DNA pool).

We use about 230 sequences obtained after the fourth round of experiment, to estimate $\tilde{\epsilon}_{i, \alpha}$. We first search those 230 sequences S, to identify CTF/NFI binding sites s_{M} that correspond to $L=15 \mathrm{bp}$ long statistically overrepresented motifs. The unsupervised search was performed by using a Gibbs search based algorithm [32], and the obtained set of binding sites s_{M} was used to determine $\tilde{\epsilon}_{i, \alpha}$ by numerically solving equation (F.5). The obtained energy matrix $\widetilde{\epsilon}_{i, \alpha}$ is given in appendix F (table F 1). We will further call $\widetilde{\epsilon}_{i, \alpha}$ the finite T energy matrix, to emphasize that, contrary to the QPMEME algorithm [7], the optimization of Λ (equation (5)) is not done in the $T \rightarrow 0$ limit. We shift columns of $\tilde{\epsilon}_{i, \alpha}{ }^{7}$ so that the mean of the energy distribution $\rho(E)$ (given by equation (A.5)), for the ensemble of random oligos of length L is zero.

We next compare our method with both the information theory based method and a widely used empirically formulated procedure, MatInspector [30]. For this purpose, we construct both the information theory weight matrix $w_{i, \alpha}$ (see, e.g., [33])

[^3]

Figure 5. Comparison of the DET curves for the finite T energy matrix, the information theory weight matrix and the MatInspector weight matrix. Note that E / χ is measured relative to the average binding energy in a random ensemble, so that $\exp \left(-E^{2} /\left(2 \chi^{2}\right)\right)$ on the horizontal axis is proportional to the number of false positives. A false negative fraction is inferred from figure 4, by calculating cumulatives of the corresponding energy distributions.
and the MatInspector weight matrix $w_{i, \alpha}^{\mathrm{MI}}$ (see [30]) from the same set of binding sites s_{M} that we used to compute our finite T energy matrix. The obtained matrices are given and compared in appendix F . We normalize $w_{i, \alpha}$ and $w_{i, \alpha}^{\mathrm{MI}}$ and choose the zeros of weight matrix scores (i.e. 'energies') for both matrices in the same way as for $\tilde{\epsilon}_{i, \alpha}$. The three matrices are then used to compute the corresponding energy distributions for more than 6000 sequences extracted from the third round of SELEX, and their comparison is shown in figure 4 . We see that there is a noticeable difference in the estimates of energies obtained by the three weight matrices.

To compare performance of the methods, we will infer a false positive/false negative trade-off for the three matrices. The fraction of false negatives, for certain threshold E / χ, can be readily estimated by computing cumulatives of the distributions shown in figure 4. Further, the fraction of false positives can be calculated by computing the corresponding cumulative of the energy distribution of random oligos (see equation (A.4) in appendix A). Therefore, with our choice for the zero of energy, it is evident that $\exp \left(-E^{2} /\left(2 \chi^{2}\right)\right)$ (on the abscissa of figure 5) is proportional to the number of false positives. More precisely, if one searches a random DNA sequence with total length N_{D}, the total number of binding sites with energy scores below E / χ is approximately $\left(N_{D} / \sqrt{2 \pi}\right) \int_{-\infty}^{E / \chi} \exp \left(-x^{2} / 2\right) \mathrm{d} x \sim N_{D} \exp \left(-E^{2} /\left(2 \chi^{2}\right)\right.$) (see equations (A.4) and (7)), where the last approximation is valid for $|E / \chi| \gg 1$.

The above estimates of false positives and false negatives can be used to obtain the detection error trade-off (DET) curves (see $[7,34]$), which are shown in figure $5 .{ }^{8}$ We see
${ }^{8}$ In the construction of the DET curve for MatInspector we did not use the so-called 'core similarity', which can optionally be used as a second threshold in the method [30]. The reasons are that the use of core similarity is left as an
that over the entire range of fixed false negative values on the vertical axis, fraction of false positives for the finite T energy matrix is few times lower compared to the false positive rate for the information-theory weight matrix. In the case of the MatInspector weight matrix, the finite T energy matrix has about two times smaller false positive rate for false negative fractions smaller than 40%, while for larger false negative fractions the two DET curves come close to each other. We note that the meaningful range, in which one is likely to operate in practice, is the one with a smaller fraction of false negatives (i.e., 40% or below), where the finite T energy matrix clearly shows better performance.

Figure 5 shows that, while our method outperforms both MatInspector and the information theory method, it appears that MatInspector shows a better false positive/false negative trade-off compared to the information theory method. We, however, note that MatInspector is an empirically formulated procedure, i.e., it is not founded on either statistical considerations, such as the information theory method, or on a (bio)physical model of TF-DNA interactions, such as the method presented here. We therefore believe that the performance of MatInspector would change from one experiment to the other, and that a better performance of MatInspector compared to the information theory method may not prove to be systematic. On the other hand, since our method is based on a correct physical model of SELEX experiments, we expect that it will systematically produce reliable estimates of the interaction parameters. In any case, fixed stringency SELEX experiments, which will be performed in future, will provide opportunities to more thoroughly test the performance of the algorithms.

Finally, we discuss how the above comparison of the three algorithms may be affected by the possible presence of noise in the input data used to construct the three weight matrices. We obtained the set of (putative) binding sites through a heuristic Gibbs sampling algorithm, which is in principle not guaranteed to find the true binding sites. So if there are misassignments in the input data, the question is whether the better performance of our method could be the result of higher robustness with regard to noise, rather than higher accuracy for error-free data. To asses the amount of noise in the input data we performed a self-consistency check. We scored all DNA sequences selected in the fourth round of the experiment with the finite T energy matrix and classified all binding sites above score -3.4 as specific binders and all below -3.4 as non-specific binders (note that -3.4 corresponds to the saddle of the bimodal distribution shown in figure 4). We find that only one in the 175 large set of input binding sites obtained by the Gibbs algorithm is not contained in the list of 184 specific binders classified with the finite T energy matrix. This indicates that the noise level in the input data is likely quite small. The apparent low number of misassignments in the output of Gibbs alignment is likely a consequence of the low number of random
'optional feature at the discretion of the user' [30], which was not used in the example searches in [30]. Additionally, in [30] it is not stated how to choose the value of the second threshold, which makes it hard to fairly compare a method with two (arbitrary) thresholds with the methods that use only one threshold.
sequences extracted from the fourth round of SELEX^{9}, and the fact that the length of SELEX sequences is quite short (25 bp).

5. Conclusion and outlook

In this paper, we modeled SELEX experiments and proposed a novel method of data analysis. Our analysis showed that for a certain realistic range of parameters, the suitable solution for the number of rounds that should be performed does not exist at all. We argued that even for the parameters for which the solution exists, it is very hard to find such a solution in practice. However, we showed that the modification of the standard SELEX procedure in which chemical potential is fixed [14] robustly selects sequences that allow one to successfully determine the energy matrix. We next proposed a novel method for inferring an energy matrix from the sequences extracted from a SELEX experiment with fixed selection stringency. In contrast to the widely used information theory weight matrix method, our procedure correctly represents saturation in binding probability. As an example of the procedure, we estimated the energy matrix for CTF/NFI TF by analyzing the data from the experiment by Roulet et al [14]. We demonstrated that our energy matrix leads to a significantly better false positive/false negative trade-off.

Finally, we compared the results of our analysis with some widely held views. It is generally well understood that doing too large a number of SELEX rounds leads to too strong a selection. It is, however, widely believed that the problem can be solved by doing only few selection cycles. For example, in the recent SELEX experiment by Kim et al [35], it was noted, ". . . we used fewer rounds of selection than a conventional SELEX to avoid the enrichment of just a few high affinity winners". However, as shown by our analysis, this can lead to another problem, i.e., if too few SELEX rounds are performed, too large a number of random sequences are likely to be selected. Moreover, we found that the problems of overselection and too high amount of noise are, in practice, very hard to reconcile within the standard SELEX procedure and that a modified experiment with a fixed chemical potential has to be performed instead. From the aspect of data analysis, we showed that the commonly used information theory based method, widely believed to be well founded in both statistics and thermodynamics [36], is not appropriate for analysis of data for SELEX experiments with fixed selection stringency.

In the context of future research, we believe that the analysis presented here, together with the experimental methods introduced in [14], opens a perspective to apply highthroughput, fixed stringency, SELEX experiments for a large number of different transcription factors. This would provide a reliable method for detection of transcription factor binding sites, and would facilitate the comprehensive understanding of gene regulation.

[^4]
Glossary

Weight matrix. For a binding pattern of length L it is defined as a matrix of numbers $w_{i, \alpha}$ where $i \in[1,2, \ldots, L]$ and $\alpha \in[\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}]$. The score of the sequence $\alpha_{1}, \ldots, \alpha_{L}$ is given by $w_{1, \alpha_{1}}+w_{2, \alpha_{2}}+\cdots+w_{L, \alpha_{L}}$.

Sensitivity. It is defined as TP/(TP +FN$)$, where TP is the number of true positives and FN is the number of false negatives. In the context of a TF binding site search, a true positive (TP) arises when an algorithm correctly classifies a true binding site as such, while a false negative (FN) arises when an algorithm classifies a true binding site as a non-binding site.

Specificity. It is defined as $\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$, where TN is the number of true negatives and FP is the number of false positives. In the context of TF binding site search, a true negative arises when an algorithm correctly classifies a true non-binding site as such, while a false positive (FP) arises when a search algorithm classifies a true non-binding site as a binding site.

Serial analysis of gene expression (SAGE). It is a method for comprehensive analysis of gene expression patterns. In the context of this paper, a part of the SAGE protocol can be used to link together oligomers extracted from SELEX in order to form longer DNA molecules that can be efficiently sequenced.

Gel shift. It is a technique used to separate free DNA molecules from DNA molecules that are in complex with protein, based on the fact that protein-DNA complexes migrate more slowly through gel under the influence of an electric field.

Polymerase chain reaction ($P C R$). It is an experimental technique that allows one to produce a large number of copies of any fragment of DNA. In principle, the number of DNA molecules is doubled in each round of PCR, so there is an exponential increase in the number of molecules with the number of performed PCR rounds.

Dissociation constant. For sequence S it is equal to the concentration of (free) TF for which there is 50% probability that a DNA molecule S will be bound by the TF. The relationship between the dissociation constant and the binding energy $E(S)$ is given by $K_{D}(S)=K \exp (E(S))$, where K is a proportionality constant.

Maximum likelihood estimation. It is a statistical method used to estimate unknown parameters of a (known) probability distribution. The basic principle is to draw a sample from the distribution, calculate the probability that this sample is observed and then determine the unknown parameters such that this probability is maximal.

Acknowledgments

This work was supported by NIH grant no GM67794 (to Boris Shraiman). Final parts of this work were supported by NSF under Agreement no 0112050 and NSF grant no MCB-0418891. We are grateful to Boris Shraiman for useful discussions, and to Andrew Millis, Harmen Bussemaker and Istok Mendas for critical reading of the manuscript. MD acknowledges the hospitality of the Kavli Institute for Theoretical Physics where part of this work was done and is grateful to Valerie Parsegian for reading the manuscript.

Appendix A. A biophysical model of TF-DNA interaction

Let us consider an experiment where a certain number of identical DNA oligomers with sequence S and length L (equal to the length of the TF binding site) are mixed into a solution with some concentration of TF. It can be shown (see, e.g., [7]) that the equilibrium probability $p(S)$ that a DNA sequence S is bound by TF is given by

$$
\begin{equation*}
p(S)=\frac{1}{1+\exp (E(S)-\mu)}=f(E(S)-\mu) \tag{A.1}
\end{equation*}
$$

In equations (A.1) and (A.2), p_{f} is the concentration of free TF, μ is the chemical potential, while K is a multiplicative constant related to the counting number of quantum states in a box (e.g., see [37]).

Chemical potential μ is set by the free TF concentration in the solution:

$$
\begin{equation*}
\mu=\log \left(p_{f} / K\right) \tag{A.2}
\end{equation*}
$$

Note that in the above equations all energies are rescaled by $k_{B} T$. The form of the binding probability $f(E(S)-\mu)$ in equation (A.1) corresponds to the Fermi-Dirac distribution (see, e.g., [37]). If the binding energy $E(S)$ of a sequence S is well below μ, then $f(E(S)-\mu)$ is close to 1 and the sequence S is almost always bound by TF. We will further call sequences with binding energy $E(S)$ which corresponds to this limit saturated. On the other hand, if $E(S)$ is well above μ, the sequence S is rarely bound, with probability given by the Boltzmann distribution $f(E(S)-\mu) \approx \exp (-(E(S)-$ $\mu)$). As shown in [7], the information theory weight matrix procedure assumes Boltzmann distribution of binding probability, and is, therefore, not appropriate whenever saturation of binding occurs.

Further, we need an expression for $E(S)$. The most simple model of TF-DNA interaction, which we use in this paper, assumes that the interaction of a given base with the factor does not depend on the neighboring bases,

$$
\begin{equation*}
E(S) \approx \epsilon \cdot S=\sum_{i=1}^{L} \sum_{\alpha=1}^{4} \epsilon_{i}^{\alpha} S_{i}^{\alpha}, \tag{A.3}
\end{equation*}
$$

where $S_{i}^{\alpha}=1$, if base α is at position i and $S_{i}^{\alpha}=0$ otherwise. ϵ_{i}^{α} is the interaction energy with the nucleotide α at the position $i=1, \ldots, L$ of the DNA string [20], and ϵ is called the energy matrix. The simple parameterization given by equation (A.3) provides a very good approximation in many cases [20, 22-24],
although there are examples where binding at some positions in the binding site shows dependence on dinucleotide pairs [38-40].

We further need to compute the energy distribution $\rho(E)$ for an ensemble of randomly generated oligonucleotides, with length equal to the length L of TF binding site. In [7] it was shown that in the first approximation $\rho(E)$ is given by a Gaussian,

$$
\begin{equation*}
\rho(E) \approx \exp \left(-(E-\bar{E})^{2} / 2 \chi^{2}\right) / \sqrt{2 \pi \chi^{2}} \tag{A.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{E}=\sum_{i=1}^{L} \bar{\epsilon}_{i} \tag{A.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{L} \sum_{\alpha=1}^{4} p_{\alpha}\left(\epsilon_{i}^{\alpha}-\bar{\epsilon}_{i}\right)^{2} \tag{A.6}
\end{equation*}
$$

where $\bar{\epsilon}_{i}=\sum_{\alpha=1}^{4} p_{\alpha}\left(\epsilon_{i}^{\alpha}\right)$.
As noted in footnote 7 , each column of an energy matrix can be shifted for a provisional base independent value, and a convenient choice would be to set $\bar{\epsilon}_{i}=0$, so that $\bar{E}=0$ and

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{L} \sum_{\alpha=1}^{4} p_{\alpha}\left(\epsilon_{i}^{\alpha}\right)^{2} \tag{A.7}
\end{equation*}
$$

From the above equation it follows that χ is equal to the norm of the energy matrix ϵ_{i}^{α}, with 'metric' given by the background single base frequencies p_{α}.

We further note that $\rho(E)$ is well approximated by equation (A.4) in the proximity of maximum $E=\bar{E}$, however, away from the maximum deviations from Gaussianity appear. In fact, the support of $\rho(E)$ is finite with the 'bottom of the band' $E_{S}=\sum_{i} \min _{\alpha} \epsilon_{i, \alpha}$ (while the 'top' is given by $\sum_{i} \max _{\alpha} \epsilon_{i, \alpha}$). In this paper, we work with the Gaussian approximation to $\rho(E)$, but we also introduce a cut in the distribution to account for the fact that the support E_{S} is finite (see appendix C).

Further extensions of the TF-DNA interaction model, necessary for our modeling of SELEX experiments, are given in appendices B and C.

Appendix B. Non-specific binding of TF to DNA

We here assume that a given TF can bind to DNA in two conformations. The first conformation results in the sequence specific interaction, with the interaction energy $E(S)$. The second conformation results in the sequence independent (nonspecific) interaction, with the interaction energy $E_{n s}$ [2]. $E_{n s}$ is called the threshold for non-specific binding. We consider a reversible reaction of binding of the TF to a DNA sequence S, where TF can bind with S in two conformations. Sequence specific, and sequence non-specific reactions can, respectively, be represented by

$$
\begin{equation*}
[\mathrm{TF}]+[S] \quad \Leftrightarrow \quad[\mathrm{TF}-S]_{s} \tag{B.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[\mathrm{TF}]+[S] \quad \Leftrightarrow \quad[\mathrm{TF}-S]_{n} \tag{B.2}
\end{equation*}
$$

Here, $[\mathrm{TF}]$ is the concentration of free $\mathrm{TF},[S]$ is the concentration of sequence S that is not in the complex with protein, while $[\mathrm{TF}-S]_{s}$ and $[\mathrm{TF}-S]_{n}$ are the concentrations of TF that is bound to the TF in the sequence specific, and in the sequence non-specific conformation respectively. In the equilibrium, the following relations hold:

$$
\begin{align*}
K \exp (E(S)) & =\frac{[\mathrm{TF}][S]}{[\mathrm{TF}-S]_{s}} \tag{B.3}\\
K \exp \left(E_{n s}\right) & =\frac{[\mathrm{TF}][S]}{[\mathrm{TF}-S]_{n}} \tag{B.4}
\end{align*}
$$

From equations (B.3) and (B.4) we have that the probability that a sequence S is bound by the TF is given by

$$
\begin{align*}
p(S) & =\frac{[\mathrm{TF}-S]_{s}+[\mathrm{TF}-S]_{n}}{[S]+[\mathrm{TF}-S]_{s}+[\mathrm{TF}-S]_{n}} \tag{B.5}\\
& =\frac{a}{b \exp (E(S))+1}+c_{n s} .
\end{align*}
$$

In the equation above,

$$
\begin{gather*}
a=\frac{1}{1+\exp \left(\mu-E_{n s}\right)} \tag{B.6}\\
b=\exp (-\mu)\left[1+\exp \left(\mu-E_{n s}\right)\right] \tag{B.7}
\end{gather*}
$$

and

$$
\begin{equation*}
c_{n s}=\frac{1}{1+\exp \left(E_{n s}-\mu\right)} \tag{B.8}
\end{equation*}
$$

where $\mu=\log ([\mathrm{TF}] / K)$. By comparing equation (B.5), with equation (A.1) the quantity b can be identified as the 'effective' fugacity in the presence of non-specific binding. From equation (B.7) then follows that, non-specific binding, in principle, shifts μ toward more negative values. In practice, however, we most often have a case in which the amount of TF is much less than the amount of DNA. For example, even for a pleiotropic TF such as CRP in E. coli, the total number of CRP molecules is much less than the total length of the genome [41], while in SELEX experiments protein is typically in large excess over DNA. It is then obvious that μ has to be significantly below $E_{n s}$, since all DNA sequences would, otherwise, have to be bound with high probability. Therefore, we in practice have that $\exp \left(\mu-E_{n s}\right) \ll 1$, so from equations (B.6) and (B.7) follows that $a \approx 1, b \approx \exp (-\mu)$ and $c_{n s} \approx \exp \left(-\left(E_{n s}-\mu\right)\right)$, so we have that

$$
\begin{equation*}
p(S) \approx \frac{1}{\exp (E(S)-\mu)+1}+c_{n s} \tag{B.9}
\end{equation*}
$$

Therefore, the effect of non-specific binding enters through $c_{n s}$, which is determined by the position of μ relative to $E_{n s}$. We note that values of $E_{n s}$ were not experimentally quantitated [25], so one does not know what range of values $E_{n s}$ can take. Unless $E_{n s}$ is positioned in the strong binding tail of $\rho(E)$, non-specific binding will not have a large effect. As discussed in section 3, non-specific binding is in SELEX experiments essentially indistinguishable from the background partitioning effect.

Appendix C. Binding of TF to a longer DNA sequence

In appendix A , we derived the binding probability under the assumption that the length l of DNA sequence is equal to the length L of the TF binding site. However, for DNA sequences used in SELEX, l is typically larger than L. For example, in the SELEX experiment performed by Roulet et al [14] (see section 3.2) $l=25 \mathrm{bp}$, while $L=15 \mathrm{bp}$ for CTF/NFI TF. It is straightforward to obtain that the probability that sequence with length l will be bound is given by

$$
\begin{equation*}
p(S)=\frac{\exp (\mu) \sum_{i=1}^{l-L} \exp \left(-E\left(s_{i}\right)\right)}{1+\exp (\mu) \sum_{i=1}^{l-L} \exp \left(-E\left(s_{i}\right)\right)} \tag{C.1}
\end{equation*}
$$

In the equation above, the sequences s_{i} are L long binding sites, corresponding to all possible $l-L$ frame shifts in which the TF can bind to a sequence S, while μ is chemical potential (see appendix A). We assume that $l<2 L$, which is typically the case in SELEX experiments, so that two or more TF molecules cannot simultaneously bind to the sequence S. Note that all quantities in equation (C.1) are rescaled by $k_{B} T$. For $l_{e}=l-L$ that is not too large, which is typically the case in the experiments, the expression $\sum_{i=1}^{l_{e}} \exp \left(-E\left(s_{i}\right)\right)$ can be approximated by taking into account only the contribution from the strongest binding site s_{M}, where $E_{M}(S)=$ $E\left(s_{M}\right)=\min \left\{E\left(s_{i}\right), i \in\left(1, l_{e}\right)\right\}$. With this approximation, equation (C.1) simplifies to

$$
\begin{equation*}
p(S) \approx f\left(E_{M}(S)-\mu\right)=\frac{1}{1+\exp \left(E_{M}(S)-\mu\right)} \tag{C.2}
\end{equation*}
$$

which is the Fermi-Dirac probability encountered before (see appendix A).

From equation (C.2) it follows that binding of a TF to a sequence S with $l>L$ is (approximately) equivalent to the binding to the sequence s_{M} with length L. Let us now look at the first round of SELEX, where the TF is mixed with a large number of randomly generated sequences of length l. In order to make the problem equivalent to that in which $l=L$, instead of density of states $\rho(E)$ (see appendix A), we have to use $\rho_{M}(E)$ defined as the number of sequences S, for which $E_{M}(S)$ has energy between E and $E+\mathrm{d} E$.

To calculate $\rho_{M}(E)$, we neglect correlations in binding energies $E\left(s_{i}\right)$ (see equation (C.1)) of l_{e} binding sites that belong to the same sequence S. This is in general well justified, unless sequence S consists of the long repeat. In particular, the validity of this approximation was confirmed by numerically testing equation (C.4) below. Based on this, $\rho_{M}(E)$ can be calculated by generating sets of l_{e} values of E from distribution $\rho(E)$ and retaining only the strongest binding energy from each set. It is straightforward to see that $\rho_{M}\left(E^{\prime}\right)$ can be obtained from $\rho(E)$ by

$$
\begin{equation*}
\rho_{M}\left(E^{\prime}\right)=l_{e} \frac{\mathrm{~d} \Phi\left(E^{\prime}\right)}{\mathrm{d} E^{\prime}}\left(1-\Phi\left(E^{\prime}\right)\right)^{l_{e}-1} \tag{C.3}
\end{equation*}
$$

where $\Phi\left(E^{\prime}\right)$ is the cumulative distribution given by $\Phi\left(E^{\prime}\right)=$ $\int_{-\infty}^{E^{\prime}} \rho(E) \mathrm{d} E$. The expression on the right-hand side of equation (C.3) is, therefore, equal to the probability that $l_{e}-1$ values of E generated from $\rho(E)$ are above E^{\prime}, while one
of them (the strongest binding energy) is between E^{\prime} and $E^{\prime}-\mathrm{d} E^{\prime}$.

By plotting $\rho_{M}(E)$, given by equation (C.3) we see that $\rho_{M}(E)$ can be approximated by a Gaussian,

$$
\begin{equation*}
\rho_{M}(E) \approx \exp \left(\left(E-\bar{E}_{l_{e}}\right)^{2} / 2 \chi_{l_{e}}^{2}\right) \tag{C.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{E}_{l_{e}}=\bar{E}-a\left(l_{e}\right) \chi \tag{C.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi_{l_{e}}=b\left(l_{e}\right) \chi \tag{C.6}
\end{equation*}
$$

where \bar{E} and χ are respectively the mean value and the standard deviation for $\rho(E)$ (see appendix A), while $a\left(l_{e}\right)$ and $b\left(l_{e}\right)$ are respectively monotonically increasing and decreasing functions of l_{e}. Functions $a\left(l_{e}\right)$ and $b\left(l_{e}\right)$ can be calculated numerically (e.g., $a(10)=1.4$ and $b(10)=0.3$). Numerical analysis shows that approximately, $a\left(l_{e}\right) \approx 0.6 \log \left(l_{e}\right)$, while $b\left(l_{e}\right) \approx 1 / \sqrt{l_{e}}$.

Finally, we have to take into account that $\rho_{M}(E)$ has the finite support, where 'bottom of the band' E_{S} is determined by the energy of the strongest binder in the random pool of DNA sequences, and can be approximated by

$$
\begin{equation*}
\left(4^{L}\right) \int_{-\infty}^{E_{S}} \rho(E) \mathrm{d} E \sim 1 \tag{C.7}
\end{equation*}
$$

where $\rho(E)$ is normalized to 1 .
In equation (C.7), we assumed that the total number of sequences N (more precisely $l_{e} N$) in the DNA pool is larger than 4^{L}, so that all possible sequences of length L are present. This is most often the case in practice, since typically $L<20$, while $N \sim 10^{15}$ [13], so that $4^{L} \ll N$.

To take into account the finite support of $\rho_{M}(E)$, we make a simple approximation and introduce a sharp cut in the distribution $\rho_{M}(E)$, i.e., we take that

$$
\begin{equation*}
\rho_{M}(E) \sim \theta\left(E-E_{s}\right) \exp \left(\left(E-\bar{E}_{l_{e}}\right)^{2} / 2 \chi_{l_{e}}^{2}\right) \tag{C.8}
\end{equation*}
$$

where $\theta\left(E-E_{s}\right)$ is unit step (Heaviside) function. We note that the top of the band is finite as well, however we do not include it in equation (C.8), since energy distribution of selected oligos moves toward higher binding affinities in SELEX (see section 3.1). In reality, $\rho_{M}(E)$ becomes discrete when we approach E_{s}, however a simple approximation given by equation (C.8) is sufficient for the purpose of our model.

Appendix D. High stringency SELEX in the limit of unsaturated binding

In this appendix, we look at the limit in which the binding probability $f(E-\mu)$ in equations (2) and (3) can be approximated by the Boltzmann factor $\exp (\mu-E)$. In this limit, those equations can be solved analytically. The above approximation is valid if all selected binding sites are unsaturated in each SELEX round, i.e., if $\mu^{(k)}<E_{S}(\forall k \in$ $(1, \ldots, n)$), where n is the number of performed SELEX
rounds. In this limit, equation (2) gives

$$
\begin{equation*}
\rho_{M}^{(n)}(E) \sim\left(\exp (-E)+\exp \left(-E_{n s}\right)\right)^{n} \rho_{M}(E) \tag{D.1}
\end{equation*}
$$

where, for simplicity of notation, we assume that all noise comes from non-specific binding, i.e., $c \equiv c_{n s}$ (see equations (1)). If we use the Gaussian approximation for $\rho_{M}(E)$ (see equation (C.4)), from equation (D.1) it follows that $\rho_{M}^{(n)}(E)$ has n peaks, which are centered at positions $E_{m, k}^{(n)}=-k \chi_{l_{e}}^{2},(k \in(1, \ldots, n))$. We here shifted zero of energy, so that it coincides with $E_{l_{e}}$ (see equation (C.5)). From equation (D.1) it is obvious that nth peak $E_{m, k=n}^{(n)} \equiv E_{m}^{(n)}$ contains only sequence specific binding sites, while $k=0$ peak (centered at zero) corresponds exclusively to non-specific (i.e., random) binders. Therefore, in the limit considered here, the maximum of specifically selected binding sites (the leading maximum) is positioned at

$$
\begin{equation*}
E_{m}^{(n)}=-n \chi_{l_{e}}^{2} \tag{D.2}
\end{equation*}
$$

From equation (D.2) it follows that $E_{m}^{(n)}$ rapidly moves to higher binding energies. For example, for the realistic parameter values of $\chi l_{e}=2$ and $E_{S}=-5 \chi l_{e}$ (corresponding to $L=12$, see equation (C.7)), $E_{m}^{(n)}$ reaches E_{S} after (only) three SELEX rounds.

The 'intensity' $I_{k}^{(n)}$ of k th peak, i.e., the number of binding sites corresponding to the peak, is

$$
\begin{align*}
I_{k}^{(n)} & \sim \exp \left(-E_{n s}(n-k)\right) \int \exp (-E k) \rho_{M}(E) \\
& \approx \exp \left(-E_{n s}(n-k)\right) \exp \left(k^{2} \chi_{l_{e}}^{2} / 2\right) \tag{D.3}
\end{align*}
$$

From equation (D.3) it is straightforward to obtain that the conditions $I_{k}^{(n)}>I_{n}^{(n)}$ and $I_{k}^{(n)}>I_{0}^{(n)}$ cannot be simultaneously satisfied for $k \in(2, \ldots, n-1)$, for any parameter values. Therefore, for any given n, either zeroth or nth peak has the maximal intensity. Further, it is sensible to define 'signal-to-noise' ratio $v^{(n)}$ as the ratio of the number of specific binders corresponding to the nth peak and the number of non-specific binders corresponding to the zeroth peak. From equation (D.3) it follows that

$$
\begin{equation*}
v^{(n)}=\exp \left(n^{2} \chi_{l_{e}}^{2} / 2+n E_{n s}\right) \tag{D.4}
\end{equation*}
$$

so the signal-to-noise ratio necessarily increases with increasing n.

We next derive for what parameter values is the unsaturated limit, which we analyze in this appendix, valid. We use the self-consistency condition

$$
\begin{equation*}
\mu^{(j)}<E_{S}(\forall j \in(1, \ldots, n)) \tag{D.5}
\end{equation*}
$$

with $\mu^{(j)}$ calculated from equation (3) by using $f(E-\mu) \approx$ $\exp (\mu-E)$,

$$
\begin{equation*}
\exp \left(\mu^{(j)}\right)=\frac{p_{t} / d_{t}}{\exp \left[(j-1 / 2) \chi_{l_{e}}^{2}\right] \alpha\left(j, \chi_{l_{e}}, E_{n s}\right)+\exp \left(-E_{n s}\right)} \tag{D.6}
\end{equation*}
$$

where,

$$
\begin{align*}
& \alpha\left(j, \chi_{l_{e}}, E_{n s}\right) \\
& \quad=\frac{1+\sum_{k=0}^{j-2}\binom{j-1}{k}\left[\exp \left(-(k+j+1) \chi_{l_{e}}^{2} / 2-E_{n s}\right]^{j-k-1}\right.}{1+\sum_{k=0}^{j-2}\binom{j-1}{k}\left[\exp \left(-(k+j-1) \chi_{l_{e}}^{2} / 2-E_{n s}\right]^{j-k-1}\right.} . \tag{D.7}
\end{align*}
$$

We note that the condition (D.5) (with $\mu^{(j)}$ given by equations (D.6) and (D.7)) is satisfied for the subset of parameter values that are inside the realistic range. For example, the condition (D.5) holds for $p_{t}=10 \mathrm{nM}, d_{t}=$ $10 \mu \mathrm{M}$ (see, e.g., [12]), $\chi_{l_{e}}=2, E_{n s}=-2 \chi_{l_{e}}, E_{S}=-5 \chi_{l_{e}}$, and for all n until $E_{m}^{(n)}$ reaches E_{S} (i.e., for $n=1,2,3$).

We finally discuss how $\mu^{(n)}$ depends on the parameter values (for further discussion, we let $j \rightarrow n$ in equation (D.6)). From equation (D.6) it is straightforward to show that $\mu^{(n)}$ necessarily decreases, with increasing n. Further, the following interpretation can be assigned to the terms on the right-hand side of equation (D.6). It is obvious that $\mu^{(n)}$ increases, with the increase of (total) protein to (total) DNA ratio p_{t} / d_{t}. The term $\exp \left[(n-1 / 2) \chi_{l_{e}}^{2}\right]$ accounts for the fact that the (average) binding energy of sequences corresponding to the nth peak increases with n (see equation (D.2)), which results in the decrease of the concentration of free TF and consequently in the decrease of $\mu^{(n)}$. From equation (D.7) it can be noted that $\alpha\left(n, \chi_{l_{e}}, E_{n s}\right) \leqslant 1$. This term, therefore, leads to the increase of $\mu^{(n)}$, which may be explained by the fact that for $n>1$ there are $n-1$ peaks of $\rho_{M}^{(n)}(E)$ 'generated' by non-specific binding. All those peaks have smaller (mean) binding energy compared to the nth peak, which results in the smaller amount of the specifically bound TF. Finally, the term $\exp \left(-E_{n s}\right)$ accounts for the fact that some amount of TF is non-specifically bound by DNA sequences, which leads to the decrease of $\mu^{(n)}$. The dependence of $\mu^{(n)}$ from $E_{n s}$ is, therefore, quite complicated, since increase in non-specific binding decreases $\mu^{(n)}$ through $\exp \left(-E_{n s}\right)$, but increases it through $\alpha\left(n, \chi_{l_{e}}, E_{n s}\right)$. Similarly, the increase of $\chi_{l_{e}}$ has the opposite effects on $\mu^{(n)}$ through terms $\exp \left[(n-1 / 2) \chi_{l_{e}}^{2}\right]$ and $\alpha\left(n, \chi l_{e}, E_{n s}\right)$.

Appendix E. Maximum of energy distribution in SELEX with fixed selection stringency

We determine how the position of maximum $E_{m}^{(n)}$ of $\rho_{M}^{(n)}(E)$ (see equation (4)), changes with the number of performed SELEX rounds n. We first shift zero of energy to coincide with $\bar{E}_{l_{e}}$ (see equations (C.4) and (C.5)). Position of maxima of $\rho_{M}^{(n)}(E)$ is given by

$$
\begin{equation*}
\left.\frac{\mathrm{d} \rho_{M}^{(n)}(E)}{\mathrm{d} E}\right|_{E=E_{m}^{(n)}}=0 \tag{E.1}
\end{equation*}
$$

From equation (4) and the equation above, we obtain

$$
\begin{equation*}
\left[1-f\left(E_{m}^{(n)}-\mu\right)\right]=-\frac{E_{m}^{(n)}}{n \chi_{l_{e}}^{2}} \tag{E.2}
\end{equation*}
$$

The equation above can be solved graphically, i.e., positions of $E_{m}^{(n)}$ (for different n) are determined by the intersections of the family of lines $\phi_{n}(E)=-E /\left(n \chi_{l_{e}}^{2}\right)$ and the curve $[1-f(E-\mu)$. If we approximate $f(E-\mu)$ by a step $\theta(\mu-E)$ (see the dashed line in figure E1), we obtain that $E_{m}^{(n)}=-n \chi_{l_{e}}^{2}$ for $n<-\mu / \chi_{l_{e}}^{2}$ and $E_{m}^{(n)}=\mu$ otherwise, which is shown in figure E1. Correction, accurate up to the next order

Figure E1. Full lines and dashed lines present $1-f(E-\mu)$ and unit step approximation to $1-f(E-\mu)$ respectively. Dash-dotted lines present family of lines $\phi_{n}(E)=-E /\left(n \chi_{l_{e}}^{2}\right)$, which is here plotted for $n=1, \ldots, 4$. The parameter values in this figure are $\chi_{l_{e}}=3.5$ and $\mu=-5 \chi_{l_{e}}$. Positions of $E_{M}^{(n)}$ are determined by the intersections of dash-dot lines and the solid curve. Note that, for the parameters we choose, $E_{M}^{(1)}=-\chi_{l_{e}}^{2}$, while $E_{M}^{(n)} \approx \mu$ for $n \geqslant 2$.
in $1 / \chi_{l_{e}}^{2}$ can be found by linearizing $f(E-\mu)$ around $E=\mu$ (see the dotted line in figure E1). We then obtain

$$
\begin{equation*}
E_{m}^{(n)}=\frac{(\mu-2)}{1+4 /\left(\chi_{l_{e}}^{2} n\right)} \tag{E.3}
\end{equation*}
$$

if $n>(-\mu+2) / \chi_{l_{e}}^{2}$, and $E_{m}^{(n)}=-n \chi_{l_{e}}^{2}$ otherwise. Note that, for n large enough, i.e., $n \gg 4 / \chi_{l_{e}}^{2}, E_{m}^{(n)} \rightarrow(\mu-2)$. Since in SELEX experiments μ is typically positioned in the tail of the energy distribution of random binders, we expect $\mu \gg 1$ (see also the comment below equation (E.3)), so $E_{m}^{(n)}$ for $n>-\mu / \chi_{l_{0}}^{2}$ is well approximated by $E_{m}^{(n)} \approx \mu$ (see also figures E1 and 3).

Appendix F. Computing energy matrix from extracted SELEX sequences

We determine the energy matrix $\tilde{\epsilon}$, and the parameter γ by maximizing the likelihood function Λ (see equations (5) and (6)), subject to the constraints

$$
\begin{equation*}
\sum_{i, \alpha} p_{\alpha} \widetilde{\epsilon}_{i, \alpha}^{2}=1 \tag{F.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\alpha} p_{\alpha} \widetilde{\epsilon}_{i, \alpha}=0 \quad(\forall i) \tag{F.2}
\end{equation*}
$$

The constraint (F.1) follows from $\widetilde{\epsilon}_{i, \alpha}=\epsilon_{i, \alpha} / \chi$ and $\chi^{2}=\sum_{i, \alpha} p_{\alpha} \epsilon_{i, \alpha}^{2}$ (see equation (A.6)), while the constraint (F.2) shifts columns of $\tilde{\epsilon}_{i, \alpha}$ (see footnote 7) so that $\bar{\epsilon}_{i}=0$ and consequently $\bar{E}=0$ (see equations A. 4 and A.5). As discussed in section 4 and appendix C, we approximate the binding probability $f(E(S)-\mu)$ in Λ by using the strongest binding site s_{M} with length L, on each sequence $S(S \in A)$ of
length l. To simplify notation, we further, in this appendix, use $s_{M} \equiv s$. If we use μ / χ from equation (8), variation of Λ with respect to $\widetilde{\epsilon}_{i, \alpha}$ and γ leads to

$$
\begin{align*}
\frac{\partial \Lambda}{\partial \widetilde{\epsilon}_{i, \alpha}} & =-(n \chi) \sum_{s \in A}[1-f(E(s)-\mu)]\left(s_{i, \alpha}-s_{i, \alpha}^{*}\right) \\
& -(n \chi) \gamma \int f^{n}(E-\mu)[1-f(E-\mu)] \rho_{M}(E) \mathrm{d} E s_{i, \alpha}^{*} \\
& -2 \alpha p_{\alpha} \widetilde{\epsilon}_{i, \alpha}-\lambda p_{\alpha}=0, \tag{F.3}\\
\frac{\partial \Lambda}{\partial \gamma} & =\frac{n_{S}}{\gamma}-\int f^{n}(E-\mu) \rho_{M}(E) \mathrm{d} E=0, \tag{F.4}
\end{align*}
$$

where α and λ are the Lagrange multipliers associated with the constraints (F.1) and (F.2) respectively, while $\rho_{M}(E)$ is given by equation (C.4). Eliminating α, λ and γ, using respectively equations (F.1), (F.2) and (F.4), leads to the equation that implicitly determines $\widetilde{\epsilon}_{i, \alpha}$,
$\tilde{\epsilon}_{i, \alpha}=\frac{\frac{p_{\alpha}^{-1}}{n_{s}} \sum_{s \in A}[1-f(E(s)-\mu)]\left(s_{i, \alpha}-s_{i, \alpha}^{*}\right)+\left(s_{i, \alpha}^{*} / p_{\alpha}-1\right)\left(1-\nu^{(n+1)}\right)}{\frac{1}{n s} \sum_{s \in A}[1-f(E(s)-\mu)](E(s)-\mu)+\mu\left(1-\nu^{(n+1)}\right)}$,
where

$$
\begin{equation*}
v^{(n+1)}=\frac{\int f^{n+1}(E-\mu) \rho_{M}(E) \mathrm{d} E}{\int f^{n}(E-\mu) \rho_{M}(E) \mathrm{d} E} \tag{F.6}
\end{equation*}
$$

From equation (2) it can be observed that $\nu^{(n+1)}$ is equal to the fraction of DNA that is in the complex with protein in the $(n+1)$ th round of SELEX, when non-specific binding is small (i.e., n large enough, as discussed in section 4.1).

In practice, we typically do not know the exact value of χ, so we fix it to some reasonable value and then (numerically) solve equation (F.5) with respect to $\widetilde{\epsilon}_{i, \alpha}$. We can estimate the reasonable range of χ values, if we adopt the so-called 'two state' model [2], in which (the same) penalty in binding energy ϵ_{0} is assigned for each nucleotide that does not match the consensus sequence. Since one or two hydrogen bonds are formed per contact of the TF surface with a preferred nucleotide (energy of a hydrogen bond is $\sim k_{B} T$), ϵ_{0} can be estimated to be (1-3) $k_{B} T$ [25]. From equation (A.6) it follows that $\chi \sim \sqrt{L} \epsilon_{0}$, and with $L=12$ for CTF/NFI (we ignore the contribution of the 3 bp spacer to the binding energy), we obtain that χ is expected to take values from 3 to 12 . Numerical solutions of equation (F.5) show that for χ in this range, the quantity $\tilde{\epsilon}_{i, \alpha}$ depends weakly on the imposed value of χ. More precisely, we tested that $\tilde{\epsilon}_{i, \alpha}$, which corresponds to solving equation (F.5) with (different) values of χ in the indicated range, leads to negligible differences in energy distribution and the DET curve for the finite T energy matrix (data now shown), which justifies solving the equation without the knowledge of the exact value of χ. The energy matrix $\tilde{\epsilon}_{i, \alpha}$ obtained by our method (corresponding to $\chi=5$) is given in table F1.

Finally, we use table F1 to discuss the differences between the weight matrix parameters estimated by the three different methods. In figure $\mathrm{F} 1(A)$ histograms of energy levels corresponding to the finite T energy matrix and to the information-theoretic weight matrix are shown together. Similarly figure $\mathrm{F} 1(B)$ compares the matrix

Figure F1. Comparison of the finite T matrix elements with (A) the information theory weight matrix and (B) the MatInspector matrix elements. CTF/NFI binds DNA as a homodimer, and recognizes two 6 bp long palindrome symmetric motifs, separated by a 3 bp spacer. Consequently, matrices in table F1 were appropriately symmetrized and only the first six positions are shown. Four bars at each position on the horizontal axis correspond to A, T, C and G respectively, while heights of the bars correspond to the values of the matrix elements.

Table F1. (a) The finite T energy matrix for CTF/NFI transcription factor. (b) The information-theoretic weight matrix. (c) The MatInspector weight matrix.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(a) Finite T energy matrix															
A	0.13	0.23	0.24	0.13	-0.07	-0.16	0.03	0.02	0.00	0.05	0.18	0.19	0.24	-0.54	-0.31
T	-0.29	-0.54	0.24	0.23	0.18	0.01	-0.02	0.02	0.03	-0.17	-0.07	0.21	0.24	0.22	0.15
C	-0.04	0.20	0.24	0.24	-0.32	0.07	-0.03	0.00	0.03	0.07	0.21	-0.64	-0.72	0.13	0.21
G	0.20	0.11	-0.72	-0.61	0.21	0.09	0.02	-0.04	-0.06	0.04	-0.33	0.24	0.24	0.19	-0.05
(b) Information-theoretic weight matrix															
A	0.07	0.28	0.26	-0.15	-0.15	-0.11	0.04	0.04	0.01	0.01	0.18	-0.02	0.26	-0.39	-0.23
T	-0.22	-0.40	0.26	0.23	0.21	0.02	-0.03	0.02	-0.01	-0.11	-0.12	0.08	0.26	0.29	0.07
C	-0.05	0.18	0.26	0.49	-0.25	0.05	-0.01	-0.01	0.03	0.07	0.21	-0.55	-0.79	-0.04	0.26
G	0.20	-0.05	-0.79	-0.56	0.19	0.04	0.00	-0.04	-0.03	0.03	-0.27	0.50	0.26	0.15	-0.10
(c) MatInspector weight matrix															
A	0.06	0.19	0.29	0.16	-0.03	-0.04	0.01	0.01	0.00	0.01	0.11	0.21	0.29	-0.48	-0.16
T	-0.16	-0.50	0.29	0.23	0.11	0.01	-0.01	0.01	0.00	-0.05	-0.01	0.23	0.29	0.19	0.07
C	0.01	0.18	0.29	0.23	-0.18	0.02	0.00	0.00	0.01	0.02	0.11	-0.69	-0.86	0.12	0.10
G	0.09	0.12	-0.86	-0.63	0.10	0.02	0.00	-0.01	-0.01	0.02	-0.21	0.25	0.29	0.17	-0.01

parameters corresponding to the finite T energy matrix and the MatInspector weight matrix. The figure directly indicates which parameters are most different between the two matrices. For example, there is $\sim 150 \%$ difference between the
information-theoretic and our matrix at position 2G, $\sim 100 \%$ difference at positions 4C and 5A, etc. Similarly, comparison with the MatInspector weight matrix in figure $\mathrm{F} 1(B)$ shows that there are significant differences (from 40% to 100%)
between the two matrices at positions 1,5 and 6 while the matrices mostly agree with each other at positions 2 , 3 and 4 . Since positions 2,3 and 4 contribute more to the binding energy than positions 1,5 and 6 , the smaller difference between the DET curves of the finite T and the MatInspector matrices (as compared to the difference between the finite T and the information theory DET curves) can be attributed to the localization of the matrix differences at the less conserved positions. We note that, while the differences between the individual matrix elements are generally not very large, when binding site scores are calculated the individual differences add up to produce significant differences in, for example, the false positive/false negative trade-off shown in figure 5.

References

[1] Lewin B 2000 Genes VII (Oxford: Oxford University Press)
[2] Berg O G and von Hippel P H 1987 Selection of DNA binding sites by regulatory proteins: statistical-mechanical theory and application to operators and promoters J. Mol. Biol. 193723
[3] Stormo G D 2000 DNA binding sites: representation and discovery Bioinformatics 116
[4] Stormo G D, Schneider T D, Gold L and Ehrenfeucht A 1982 Use of the 'Perceptron' algorithm to distinguish translation initiation sites in E. coli. Nucl. Acids Res. 10 2997
[5] Staden R 1984 Computer methods to locate signals in nucleic acid sequences Nucl. Acids Res. 12505
[6] Schneider T D, Stormo G D, Gold L and Ehrenfeucht A 1986 Information content of binding sites on nucleotide sequences J. Mol. Biol. 188415
[7] Djordjevic M, Sengupta A M and Shraiman B I 2003 A biophysical approach to transcription factor binding site discovery Genome Res. 132381
[8] Frech K, Quandt K and Werner T 1997 Finding protein-binding sites in DNA sequences: the next generation Trends Biochem. Sci. 22103
[9] Robinson K, McGuire A M and Church G M 1998 A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome J. Mol. Biol. 284241
[10] Wingender E et al 2001 The TRANSFAC system on gene expression regulation Nucleic Acids Res. 29281
[11] Salgado H et al 2004 RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12 Nucleic Acids Res. 32303
[12] Tuerk C and Gold L 1990 Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase Science 249505
[13] Gold L 1995 Oligonucleotides as research, diagnostic and therapeutic agents J. Biol. Chem. 27013581
[14] Roulet E, Busso S, Camargo A A, Simpson A J G, Mermod N and Bucher P 2002 High throughput SELEX-SAGE method for quantitative modeling of transcription-factor binding sites Nature Biotech. 20831
[15] Velculescu V E, Zhang L, Vogelstein B and Kinzler K W 1995 Serial analysis of gene expression Science 270484
[16] Gold L, Brown D, He Y Y, Shtatland T, Singer B S and Wu Y 1997 From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops Proc. Natl Acad. Sci. USA 945964
[17] Saiki R K, Scharf S, Faloona F, Mullis K B, Horn G T, Erlich H A and Arnheim N 1985 Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia Science 2301350
[18] Irvine D, Tuerk C and Gold L 1991 SELEXION-systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis J. Mol. Biol. 222739
[19] Vant-Hull B, Baez A P, Davis R H and Gold L 1998 The mathematics of SELEX against complex targets J. Mol. Biol. 278579
[20] Stormo G D and Fields D S 1998 Specificity, free energy and information content in protein-DNA interactions Trends Biochem. Sci. 3109
[21] Cui Y, Wang Q, Stormo G D and Calvo J M 1995 A consensus sequence for binding of Lrp to DNA J. Bacteriol. 177 4872
[22] Benos P V, Bulyk M L and Stormo G D 2002 Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res. 304442
[23] Takeda Y, Sarai A and Rivera V M 1989 Analysis of the sequence-specific interactions between Cro repressor and operator DNA by systematic base substitution experiments Proc. Natl Acad. Sci. USA 86439
[24] Sarai A and Takeda Y 1989 Lambda repressor recognizes the approximately 2 -fold symmetric half-operator sequences assymetrically Proc. Natl Acad. Sci. USA 86 6513
[25] Gerland U, Moroz D J and Hwa T 2002 Physical constraints and functional characteristics of transcription factor-DNA interaction Proc. Natl Acad. Sci. 9912015
[26] Sengupta A M, Djordjevic M and Shraiman B I 2002 Specificity and robustness of transcription control networks Proc. Natl Acad. Sci. USA 992072
[27] Dubertret B, Liu S, Ouyang Q and Libchaber A 2001 Dynamics of DNA-protein interaction deduced from in vitro DNA evolution Phys. Rev. Lett. 866022
[28] Peng W, Gerland U, Hwa T and Levine H 2003 Dynamics of competitive evolution on a smooth landscape Phys. Rev. Lett. 90088103
[29] He Y, Stockley P G and Gold L 1996 In vitro evolution of the DNA binding sites of Escherichia coli methionine repressor MetJ J. Mol. Biol. 25555
[30] Quandt K, Frech K, Karas H, Wingender E and Werner T 1995 MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data Nucleic Acids Res. 234878
[31] Lawrence C E, Altschul S F, Bogouski M S, Liu J S, Neuwald A F and Wooten J C 1993 Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment Science 262208
[32] Liu X, Brutlag D L and Liu J S 2001 BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes Pac. Symp. Biocomput. 127
[33] Hertz G Z and Stormo G D 1999 Identifying DNA and protein patterns with statistically significant alignments of multiple sequences Bioinformatics 15563
[34] Martin A et al 1997 The DET curve in assessment of detection task performance EuroSpeech 41895
[35] Kim S, Shi H, Lee D and Lis J T 2003 Specific SR protein-dependent splicing substrates identified through genomic SELEX Nucl. Acids Res. 311955
[36] Fickett J W and Wasserman W W 2000 Discovery and modeling of transcriptional regulatory regions Curr. Opin. Biotechnol. 119
[37] Kubo R 1965 Statistical Mechanics-An Advanced Course with Problems and Solutions (Amsterdam: North-Holland)
[38] Man T K and Stormo G D 2001 Non-independence of Mnt repressor operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay Nucleic Acids Res. 152471
[39] Bulyk M L, Johnson P L and Church G M 2002 Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors Nucleic Acids Res. 301255
[40] O'Flanagan R A, Paillard G, Lavery R and Sengupta A M 2005 Non-additivity in protein-DNA binding Bioinformatics 212254
[41] Anderson W B, Schneider A B, Emmer M, Perlman R L and Pastan I 1971 Purication of and properties of the cyclic adenosine 3'-5'-monophosphate receptor protein which mediates cyclic adenosine $3^{\prime}-5$ ' monophosphate-dependent gene transcription in Escherichia coli J. Biol. Chem. 2465929

[^0]: 4 Weight matrices constructed by the method given in [7] were denoted as energy matrices. This emphasizes that weights in the matrix correspond to the estimates of contribution to the binding (free) energy due to the presence of a certain base at a certain position in the binding site.

[^1]: ${ }^{5}$ For brevity, from now on we will refer to the free energy of binding simply as 'binding energy'. In chemical literature, the commonly used notation for this quantity would be $\Delta G(S)$ rather than $E(S)$.

[^2]: ${ }^{6}$ In the analysis presented here, we used that p_{t} is constant in each round of SELEX. If p_{t} is decreased from one round to the next, as it is, in practice, done in many experiments (e.g., [29]), it is evident that this problem is even more pronounced.

[^3]: 7 Note that a provisional base independent constant can be added to each column of the weight (energy) matrix, which corresponds to the shifting zero of the weight matrix scores.

[^4]: ${ }^{9}$ Note that figure 4 shows that there is a quite small amount of noise even in the third round of experiment. The noise is further reduced in the fourth round.

