
Journal of Physics A: Mathematical and General

Properties of nonclassical maximum-entropy
states
To cite this article: I Mendas et al 2000 J. Phys. A: Math. Gen. 33 921

 

View the article online for updates and enhancements.

Related content
Algebraic structure and nonclassical
properties of the negative hypergeometric
state
Nai-le Liu

-

Thermalized displaced and squeezed
number states in the coordinate
representation
W-F Lu

-

Entangled photon–electron states and the
number-phase minimum uncertainty states
of the photon field
S Varró

-

This content was downloaded from IP address 147.91.1.41 on 13/05/2021 at 11:59

https://doi.org/10.1088/0305-4470/33/5/308
http://iopscience.iop.org/article/10.1088/0305-4470/32/33/305
http://iopscience.iop.org/article/10.1088/0305-4470/32/33/305
http://iopscience.iop.org/article/10.1088/0305-4470/32/33/305
http://iopscience.iop.org/article/10.1088/0305-4470/32/27/305
http://iopscience.iop.org/article/10.1088/0305-4470/32/27/305
http://iopscience.iop.org/article/10.1088/0305-4470/32/27/305
http://iopscience.iop.org/article/10.1088/1367-2630/10/5/053028
http://iopscience.iop.org/article/10.1088/1367-2630/10/5/053028
http://iopscience.iop.org/article/10.1088/1367-2630/10/5/053028


J. Phys. A: Math. Gen.33 (2000) 921–927. Printed in the UK PII: S0305-4470(00)08399-2

Properties of nonclassical maximum-entropy states
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Abstract. The density matrix in the position and momentum representation, the position–
momentum uncertainty product, the Wigner andQ functions, and thermal properties of the family of
the nonclassical maximum-entropy states of a single harmonic oscillator are determined. Any such
state, having the mean number of quantan, has the uncertainty productδx ·δp = (2n+1) h̄2 , and this
product attains its minimum value for the temperature parameterξ → 0. Generically, the Wigner
function has alternating sign so that the underlying maximum-entropy state is truly nonclassical.
The von Neumann entropy and the heat capacity, expressed via the temperature parameterξ ,
coincide with the corresponding quantities for the thermal state. The properties discussed here
are of interest for the description and analysis of the vibrational motion of a trapped ion in a
harmonic-oscillator potential since the equilibrium states which result under certain conditions are
the maximum-entropy states.

1. Introduction

In this paper we examine certain properties of the family of the nonclassical maximum-entropy
states of a simple harmonic oscillator, of frequencyω, recently introduced in [1]. Thesemixed
states arise when only number states,|n〉, differing by a multiple of a certain integerk (k > 1)
are allowed to be occupied, beginning with the lowest number state|q〉 labelled by the integer
parameterq (06 q 6 k−1). A specific maximum-entropy state, distinguished by the ordered
pair of integers(k, q), has then the (steady-state) density operator

ρ̂(k,q) =
+∞∑
m=0

pmk+q |mk + q〉〈mk + q|. (1)

In equilibrium state the von Neumann entropyS(k,q) = − tr[ρ̂(k,q) ln ρ̂(k,q)] takes its maximum
value. Under the constraints tr[ρ̂(k,q)] = 1 and tr[̂nρ̂(k,q)] = n, with n̂ ≡ â†â denoting
the number operator andn the mean number of quanta, one finds the number probability
distribution of the maximum-entropy states [1]

pmk+q = (1− ξ)ξm. (2)

Hereξ denotes the real parameter

ξ ≡ n− q
n− q + k

(3)

so that 0< ξ < 1. The special case(k, q) = (1, 0)corresponds to the familiarthermalstate [2].
The relevance of the maximum-entropy states to the field of quantum optics, and also for the
description of the vibrational centre-of-mass motion of a trapped ion in a harmonic-oscillator
potential, was discussed in [1]. These states can be obtained as the stationary solutions of
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a master equation which takes into accountk-quantum absorption andk-quantum emission
processes only. For the vibrational motion of a trapped ion, the states could be produced with
the help of the recently proposed method of laser-assisted quantum reservoir engineering [3].
In section 2, we determine the closed-form expressions for the density matrix in the position and
momentum representation,〈x|ρ̂(k,q)|x ′〉 and〈p|ρ̂(k,q)|p′〉 respectively, generally for a(k, q)
maximum-entropy state, and further establish with their help that the corresponding position–
momentum uncertainty product has the valueδx · δp = (2n + 1) h̄2 for any(k, q). In section 3
we obtain the Wigner function,W(k,q)(x, p), for the maximum-entropy states and find that
in almost all cases it can be negative, so that the underlying maximum-entropy state is truly
nonclassical. Additionally, we determine theQ function and with its help discuss briefly
the phase properties of the maximum-entropy states. Finally, in order to clarify the physical
significance of the parameterξ , equation (3), we examine in some detail the thermal properties
of these states. By using the appropriate expressions for the entropy and the mean energy,
E(k,q), we introduce the absolute temperatureT and find that the parameterξ is a monotonic
increasing function of the temperature. We note that the(k, q) maximum-entropy state of
the quantum oscillator may be regarded as being in thermal equilibrium with a reservoir, at
absolute temperatureT , with which it can exchange energy in lumps ofk-quanta only, and
establish that the entropy and heat capacity are certain universal functions of the temperature
parameterξ .

2. Density matrix and position–momentum uncertainty product

First, we determine the density matrix in the position representation for the(k, q) maximum-
entropy state. From equations (1) and (2) one has

〈x|ρ̂(k,q)|x ′〉 = (1− ξ)
+∞∑
m=0

ξmumk+q(x)u
∗
mk+q(x

′) (4)

with un(x) ≡ 〈x|n〉 denoting the familiar harmonic oscillator eigenfunctions [4]. With the
help of (i) the integral representation of Hermite polynomial [5], (ii) the sum (q < k, y real)

+∞∑
m=0

ymk+q

(mk + q)!
= 1

k

k−1∑
j=0

eyθj

θ
q

j

(5)

whereθj ≡ exp(2ijπ/k), and (iii) the integral quoted in [5], we obtain

〈x|ρ̂(k,q)|x ′〉 = 1− ξ√
2πσkξq/k

exp

(
x2 + x ′2

4σ 2

) k−1∑
j=0

θ
−q
j τ

−1/2
jk

× exp

(
−x

2 + x ′2 − 2ξ1/kθj xx
′

2σ 2τjk

)
(6)

where

τjk ≡ 1− ξ2/kθ2
j (7)

and

σ 2 ≡ h̄/(2ωM) (8)

with M denoting the oscillator mass. Since the harmonic oscillator functionsun(x) are real,
it is clear from (4) that the density matrix in the position representation is real not only for
x = x ′ but also for anyx 6= x ′. Nonzero off-diagonal matrix elements ofρ̂(k,q) are related to
the quantum coherences [6], while the diagonal matrix elements are the probabilities of finding
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Figure 1. Position probability density,〈x|ρ̂(3,1)|x〉, for the(k, q) = (3, 1)maximum-entropy state
with the mean number of quantan = 3 (full curve),n = 5 (broken curve) andn = 7 (chain curve).

the oscillator at the coordinatex = x ′; see figure 1. Recalling the form of the momentum
space eigenfunctions,vn(p) ≡ 〈p|n〉, of the harmonic oscillator [4], one obtains the density
matrix in the momentum representation,〈p|ρ̂(k,q)|p′〉, from 〈x|ρ̂(k,q)|x ′〉 simply by replacing
x → p, x ′ → p′ andσ → σ ′ ≡ (h̄ωM/2)1/2.

Second, having obtained the density matrix in the position and momentum representation
for the maximum-entropy states, one is able to determine the corresponding position–
momentum uncertainty product. Since the diagonal matrix element,〈x|ρ̂(k,q)|x〉, is aneven
function ofx, the expectation valuêxn = tr[x̂nρ̂(k,q)] vanishes for any oddn. Therefore the
dispersion of position for the(k, q) maximum-entropy state is(δx)2 = x̂2 = (2n + 1)σ 2,
where the last equality is obtained with the help of the special casex = x ′ of equation (6). It
is seen that(δx)2 is, for a givenn, independent of(k, q). This is illustrated in figure 2 where
the position probability densities, forn = 5, and for the first few(k, q) values are plotted;
these probability densities all have the same dispersion(δx/σ)2 = 11. The dispersion of
momentum is(δp)2 = (2n + 1)σ ′2, so that the position–momentum uncertainty product for
the (k, q) maximum-entropy state isδx · δp = (2n + 1) h̄2. Thus, the uncertainty product is
independent ofk andq, and increases linearly with the mean number of quantan. In particular,
any(k, q)maximum-entropy state, with anintegermean number of quantan = n, has the same
uncertainty product as the corresponding number state|n〉. Sincen = q +kξ/(1−ξ) > q, one
obtains theminimumuncertainty product,(δx ·δp)min = (2q +1) h̄2, for ξ → 0. In this limiting
case the probability of finding the oscillator in the ground state,|q〉, becomespq = 1 while
at the same timepmk+q = 0 form = 1, 2, 3, . . . . Hence, the mixed statêρ(k,q), equation (1),
degenerates into the pure state|q〉 with the density operator̂ρ(k,q) → |q〉〈q|. Later we shall
see that the limitξ → 0 corresponds to the zero absolute temperature,T → 0.

3. Wigner function andQ function

With the help of the density matrix in the position representation one can obtain the Wigner
function for the maximum-entropy states [7],

W(k,q)(x, p) ≡ 1

2πh̄

∫ +∞

−∞
dy exp

(
i

h̄
py

) 〈
x − y

2

∣∣∣ ρ̂(k,q) ∣∣∣x +
y

2

〉
.
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Figure 2. Position probability densities,〈x|ρ̂(k,q)|x〉, for the (k, q) = (1, 0), (2, 0) and (2, 1)
maximum-entropy states, all with the same mean number of quantan = 5, and the same dispersion
(δx/σ)2 = 11. The two peaks in the(2, 1) probability distribution correspond to the two possible
localizations of the trapped ion in that state.

Using equation (6), and the tabulated integral cited in [5], one finds

W(k,q)(x, p) = 1− ξ
πh̄kξq/k

Re

{ k−1∑
j=0

θ
−q
j

1 + ξ1/kθj
exp

[
− 2|α|2 1− ξ1/kθj

1 + ξ1/kθj

]}
(9)

where

α ≡ 1

2

( x
σ

+ i
p

σ ′
)

(10)

denotes the complex displacement parameter. The Wigner function,W(k,q)(x, p), is real and
exhibits in all but first two cases,(k, q) = (1, 0) and(2, 0), alternating sign (see figure 3).
Hence, the Wigner function cannot be regarded as a classical probability distribution in the
phase space. As long as the negative values are present the underlying maximum-entropy state
is truly nonclassical. Numerical calculations reveal that, for a given(k, q) and with increasing
ξ (this then amounts to the increasingn; see equation (3)), the negative and positive ripples of
the Wigner function reduce in amplitude, diffuse into each other and to a certain extent cancel
out. Thus one observes gradual transition from quantum to classical behaviour of the(k, q)

maximum-entropy state with increasing absolute temperature.
With the help of equation (5) one also obtains the general expression for theQ

function, Q(k,q)(α) ≡ 〈α|ρ̂(k,q)|α〉/π , for the maximum-entropy states. Here|α〉 ≡
e−|α|

2/2∑+∞
n=0 (α

n/
√
n!)|n〉 denotes the familiarcoherentstate. One finds

Q(k,q)(α) = (1− ξ) exp(−|α|2)
πkξq/k

Re

{ k−1∑
j=0

exp(ξ1/kθj |α|2)
θ
q

j

}
. (11)

It is seen that theQ(k,q) function depends, for anyk andq, only on the square of the absolute
value,|α|2, of the complex displacement parameterα; see figure 4. This is consistent with
expression (9) since one can also make the usual transition from theQ function to the Wigner
function via convolution. Since a measure of the phase uncertainty,δφ, can be obtained from
the half-width of theQ distribution in the azimuthal direction in the complexα plane [8], it
is apparent that the phase width for a maximum-entropy state has the largest possible value,
δφ = π (as is to be expected for a state that is an incoherent mixture of number states;
the Pegg–Barnett Hermitian phase operator theory [9] leads to the same conclusion). Thus,
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Figure 3. The Wigner function,W(k,q)(x, p), for the(k, q) = (3, 1)maximum-entropy state, with
momentump = 0, for three different values of the temperature parameterξ .
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Figure 4. TheQ function for the(k, q) = (3, 1)maximum-entropy state versus|α|2 ∈ [0, 10], for
four different values of the temperature parameterξ .

in spite of the fact that, for example, the(k, q) = (2, 0) state has the number probability
distribution remarkably similar to that of the squeezed vacuum state with the same mean
number of quanta [1], the corresponding phase distributions are completely dissimilar and
they can be used to discriminate between the two states. We note that the phase uncertainty
δφ = π , together with the corresponding uncertainty of the number of quanta,δn, already
determined in [1], leads to the number–phase uncertainty product for the(k, q)-maximum-
entropy state,δn · δφ = πk√ξ/(1− ξ).

Finally, in order to clarify the physical significance of the parameterξ , equation (3), we
examine the thermal properties of the maximum-entropy states. From equations (1) and (2)
one obtains

S(k,q) = −
+∞∑
m=0

pmk+q lnpmk+q = − ln(1− ξ)− ξ ln ξ

1− ξ . (12)

This, together with the mean energy,E(k,q)/h̄ω = n + 1
2 = 1

2 + q + kξ/(1− ξ), leads to the
corresponding absolute temperature

1

kBT
= ∂S(k,q)

∂E(k,q)
= − ln ξ

kh̄ω
(13)
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with kB denoting the Boltzmann constant. It is seen that the parameterξ is a monotonic
increasing function ofT so that, in particular,ξ → 0 corresponds toT → 0, andξ → +1
to T → +∞. Any (k, q) maximum-entropy state of the quantum oscillator, analogously to
the (k, q) = (1, 0) special case of the thermal state, may be regarded as being in thermal
equilibrium with a reservoir, at absolute temperatureT , with which it can exchange energy in
lumps ofk-quanta only. Further, one determines the Helmholtz free energy, the heat capacity
and the partition function:

F (k,q)

h̄ω
= E(k,q) − kBT S

(k,q)

h̄ω
= 1

2
+ q − k ln(1− ξ)

ln ξ
(14)

C(k,q)

kB
= 1

kB

∂E(k,q)

∂T
= ξ

(
ln ξ

1− ξ
)2

(15)

and

Z(k,q) = e−F
(k,q)/kBT = ξ

1
k
(q+

1
2 )

1− ξ . (16)

It is apparent that the probabilitiespmk+q , the entropyS(k,q), and the heat capacityC(k,q)

are all universal functions of the temperature parameterξ ; they are the same for any(k, q)
and are in fact the same as for the familiar thermal state. By inverting equation (13) one
can eliminate the temperature parameter,ξ = exp(−kh̄ω/kBT ), and use in all quantities the
absolute temperatureT instead. In particular, it is seen that the probabilitypmk+q , of finding
the oscillator in the number state|mk + q〉, attains its maximum value

(pmk+q)max= 1

m + 1

( m

m + 1

)m
(17)

at the temperature

Tmax= kh̄ω

kB ln(m+1
m
)
. (18)

4. Summary

In summary, we have examined certain properties of the nonclassical maximum-entropy states
of a single harmonic oscillator. Specifically we have determined the corresponding density
matrix in the position and momentum representation, the position–momentum uncertainty
product, the Wigner andQ functions, and we have also investigated the thermal properties of
these states. These results are of interest for the description and analysis of the vibrational
centre-of-mass motion of a trapped ion in a harmonic oscillator potential, since the equilibrium
states which result under certain conditions (discussed in [1]) are the maximum-entropy states
described by the density operator, equation (1).
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