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Abstract. The density matrix in the position and momentum representation, the position—
momentum uncertainty product, the Wigner ghtlnctions, and thermal properties of the family of

the nonclassical maximum-entropy states of a single harmonic oscillator are determined. Any such
state, having the mean number of quanthas the uncertainty produtt - 6p = (2n+ 1)%, and this
product attains its minimum value for the temperature paranjeter0. Generically, the Wigner
function has alternating sign so that the underlying maximum-entropy state is truly nonclassical.
The von Neumann entropy and the heat capacity, expressed via the temperature parameter
coincide with the corresponding quantities for the thermal state. The properties discussed here
are of interest for the description and analysis of the vibrational motion of a trapped ion in a
harmonic-oscillator potential since the equilibrium states which result under certain conditions are
the maximum-entropy states.

1. Introduction

In this paper we examine certain properties of the family of the nonclassical maximum-entropy
states of a simple harmonic oscillator, of frequengyecently introduced in [1]. Theseixed
states arise when only number states, differing by a multiple of a certain integér(k > 1)

are allowed to be occupied, beginning with the lowest number gtatabelled by the integer
parametey (0 < g < k—1). A specific maximum-entropy state, distinguished by the ordered
pair of integergk, q), has then the (steady-state) density operator

+00
PED =" pukrglmk + ) (mk +q|. (1)
m=0
In equilibrium state the von Neumann entraff¢? = — tr[p*2 In 5*2] takes its maximum

value. Under the constraints &f?] = 1 and trpp*?] = n, with 2 = a'a denoting
the number operator and the mean number of quanta, one finds the number probability
distribution of the maximum-entropy states [1]

Pmk+q = (1 - E)éjm (2)
Here& denotes the real parameter

n—q
—— 3
§ n—q+k (3)
sothatO< & < 1. The special cagé, ¢) = (1, 0) correspondsto the famililnermalstate [2].
The relevance of the maximum-entropy states to the field of quantum optics, and also for the
description of the vibrational centre-of-mass motion of a trapped ion in a harmonic-oscillator
potential, was discussed in [1]. These states can be obtained as the stationary solutions of
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a master equation which takes into accokigfuantum absorption andquantum emission
processes only. For the vibrational motion of a trapped ion, the states could be produced with
the help of the recently proposed method of laser-assisted quantum reservoir engineering [3].
Insection 2, we determine the closed-form expressions for the density matrix in the position and
momentum representatiotx| %9 |x’) and (p|p*?|p’) respectively, generally for &, )
maximum-entropy state, and further establish with their help that the corresponding position—
momentum uncertainty product has the vaiue §p = (2n + 1)’% for any(k, ¢). In section 3

we obtain the Wigner functiony 9 (x, p), for the maximum-entropy states and find that

in almost all cases it can be negative, so that the underlying maximum-entropy state is truly
nonclassical. Additionally, we determine tli function and with its help discuss briefly

the phase properties of the maximum-entropy states. Finally, in order to clarify the physical
significance of the parametgrequation (3), we examine in some detail the thermal properties

of these states. By using the appropriate expressions for the entropy and the mean energy,
E®2), we introduce the absolute temperat@irand find that the parametéris a monotonic
increasing function of the temperature. We note that(thg) maximum-entropy state of

the quantum oscillator may be regarded as being in thermal equilibrium with a reservoir, at
absolute temperaturE, with which it can exchange energy in lumpsistjuanta only, and
establish that the entropy and heat capacity are certain universal functions of the temperature
parametek.

2. Density matrix and position—momentum uncertainty product

First, we determine the density matrix in the position representation faktlg@ maximum-
entropy state. From equations (1) and (2) one has

XIPEPI) = (L= &) D & tpsrg (D1t () 4
m=0

with u, (x) = (x|n) denoting the familiar harmonic oscillator eigenfunctions [4]. With the
help of (i) the integral representation of Hermite polynomial [5], (i) the sym:(k, y real)

+00 ymk+q _ 1_ k—1 igj -

—= (mk + g)! k = 9;-1
wheref; = exp(2ijx/k), and (iii) the integral quoted in [5], we obtain

2 12 k-1
(x|p%D|x"y = \/Zlokiq/k exp(x 4:;; ) ;qutﬁ{l/z
2 2 1 /

x exp<—x = 2;2251(/"9,-” > (6)
where

T =1-§£7402 (7)
and

o2 =n/(2wM) (8)

with M denoting the oscillator mass. Since the harmonic oscillator functips are real,

it is clear from (4) that the density matrix in the position representation is real not only for
x = x’ but also for anyr # x’. Nonzero off-diagonal matrix elements 6% are related to

the quantum coherences [6], while the diagonal matrix elements are the probabilities of finding
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Figure 1. Position probability densityx |5 |x), for the(k, ¢) = (3, 1) maximum-entropy state
with the mean number of quaria= 3 (full curve),n = 5 (broken curve) and = 7 (chain curve).

the oscillator at the coordinate = x’; see figure 1. Recalling the form of the momentum
space eigenfunctions, (p) = (p|n), of the harmonic oscillator [4], one obtains the density
matrix in the momentum representatidp) %] p’), from (x|p%9 |x’) simply by replacing

x — p,x' = p'ando — o' = (hwM /2)?.

Second, having obtained the density matrix in the position and momentum representation
for the maximum-entropy states, one is able to determine the corresponding position—
momentum uncertainty product. Since the diagonal matrix elenteji*?|x), is aneven
function of x, the expectation valug® = tr[x"p% 9] vanishes for any odd. Therefore the
dispersion of position for thék, ) maximum-entropy state i€x)? = 32 = (2n + Do?,
where the last equality is obtained with the help of the special case:’ of equation (6). It
is seen thatsx)? is, for a giveri, independent ofk, ¢). This is illustrated in figure 2 where
the position probability densities, far = 5, and for the first fewk, ¢) values are plotted;
these probability densities all have the same disper§iofic)? = 11. The dispersion of
momentum is(§p)? = (2n + 1)0"2, so that the position—momentum uncertainty product for
the (k, ¢) maximum-entropy state & - dp = (2n + 1)%. Thus, the uncertainty product is
independent of andg, and increases linearly with the mean number of quanta particular,
any(k, g) maximum-entropy state, with amegermean number of quanta= n, has the same
uncertainty product as the corresponding number ptateSincen = g +k£/(1—£) > ¢, one
obtains thaminimumuncertainty productdx - 8p)min = (2q+1)§, for& — 0. Inthis limiting
case the probability of finding the oscillator in the ground statg,becomeg, = 1 while
at the same time, .+, = 0 form = 1,2, 3, .... Hence, the mixed sta* ¢, equation (1),
degenerates into the pure stage with the density operatgs®? — |g)(g|. Later we shall
see that the limif — 0 corresponds to the zero absolute temperafire; 0.

3. Wigner function and @ function

With the help of the density matrix in the position representation one can obtain the Wigner
function for the maximum-entropy states [7],

+00

1 [ y
wkD(x, p) = — dyexp| = -z
(x, p) o ) y p<hpy> (x >

50.0) ‘x + X>,
g 2
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Figure 2. Position probability densitiesx|5*?|x), for the (k, g) = (1,0), (2,0) and (2, 1)
maximum-entropy states, all with the same mean number of quaat8, and the same dispersion
(6x/0)? = 11. The two peaks in th€2, 1) probability distribution correspond to the two possible
localizations of the trapped ion in that state.

Using equation (6), and the tabulated integral cited in [5], one finds

1—¢ k=1 g4 1—gYkg,
kq) - -5 —L — 2la)? :
WED (e, p) = — Re{ 12::0 T+e17g, exp[ 2| 1+51/k9j“ 9)
where
1/x .p
«=3(5+i2) oo

denotes the complex displacement parameter. The Wigner fun®iér) (x, p), is real and
exhibits in all but first two casesk, ¢) = (1,0) and (2, 0), alternating sign (see figure 3).
Hence, the Wigner function cannot be regarded as a classical probability distribution in the
phase space. As long as the negative values are present the underlying maximum-entropy state
is truly nonclassical. Numerical calculations reveal that, for a gi%en) and with increasing
& (this then amounts to the increasimgsee equation (3)), the negative and positive ripples of
the Wigner function reduce in amplitude, diffuse into each other and to a certain extent cancel
out. Thus one observes gradual transition from quantum to classical behaviour(bf 4he
maximum-entropy state with increasing absolute temperature.

With the help of equation (5) one also obtains the general expression fopthe
function, %9 (a) = (a|p*?|a)/m, for the maximum-entropy states. Heje) =
g loI*/2 5% (" /y/nl)|n) denotes the familiacoherentstate. One finds

A-exp—faf) { "i exp(élfke_f|a|2>} 1)

k 7
wk&a/ = 0;

It is seen that thed *-? function depends, for anyandg, only on the square of the absolute
value, |« |?, of the complex displacement parametersee figure 4. This is consistent with
expression (9) since one can also make the usual transition frog tiiection to the Wigner
function via convolution. Since a measure of the phase uncertaifntgan be obtained from

the half-width of theQ distribution in the azimuthal direction in the complexplane [8], it

is apparent that the phase width for a maximum-entropy state has the largest possible value,
3¢ = m (as is to be expected for a state that is an incoherent mixture of number states;
the Pegg—Barnett Hermitian phase operator theory [9] leads to the same conclusion). Thus,

Q“P (@) =
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Figure 3. The Wigner function &9 (x, p), for the(k, ¢) = (3, 1) maximum-entropy state, with
momentump = 0, for three different values of the temperature paranteter
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Figure 4. The Q function for the(k, ¢) = (3, 1) maximum-entropy state versjig? [0, 10], for
four different values of the temperature paraméter

in spite of the fact that, for example, thig, g) = (2, 0) state has the number probability
distribution remarkably similar to that of the squeezed vacuum state with the same mean
number of quanta [1], the corresponding phase distributions are completely dissimilar and
they can be used to discriminate between the two states. We note that the phase uncertainty
3¢ = m, together with the corresponding uncertainty of the number of quantalready
determined in [1], leads to the nhumber—phase uncertainty product fdk the-maximum-
entropy stategn - 8¢ = wk/E/(1 — £).

Finally, in order to clarify the physical significance of the paramétexquation (3), we
examine the thermal properties of the maximum-entropy states. From equations (1) and (2)
one obtains

+o0 In
ska) — —mekwln Pmi+g = —IN(L &) — i_i (12)
m=0

This, together with the mean energy9) /ho =1 + 3 = 3 +q +k&/(1 — &), leads to the
corresponding absolute temperature

1 9Ska) In&

= = (13)
keT ~ gE®ko  kho
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with kg denoting the Boltzmann constant. It is seen that the pararseea monotonic
increasing function of” so that, in particulart — 0 corresponds t@ — 0, and¢é — +1

toT — +oo. Any (k, g) maximum-entropy state of the quantum oscillator, analogously to
the (k, g) = (1, 0) special case of the thermal state, may be regarded as being in thermal
equilibrium with a reservoir, at absolute temperatfiravith which it can exchange energy in
lumps ofk-quanta only. Further, one determines the Helmholtz free energy, the heat capacity
and the patrtition function:

F&ko gk _ paTS*D 1 kin(1—
o - kg _l,,_knd=9 (14)
hw hw 2 ln%_

cka 1 dE*.a Ing \?

_1 _g(nE (15)
kg kg 0T 1-¢
and
1g+d)
700 — o F%0/keT _ g2 (16)

1-¢&°
It is apparent that the probabilitigs,.,, the entropyS*), and the heat capacity*-?
are all universal functions of the temperature paramgtehey are the same for any, ¢)
and are in fact the same as for the familiar thermal state. By inverting equation (13) one
can eliminate the temperature paramefes; exp(—khw/kgT), and use in all quantities the
absolute temperaturg instead. In particular, it is seen that the probabifity.+,, of finding
the oscillator in the number stafi@k + ¢), attains its maximum value

1 m \m
(Pmk+q)max = m_+1 (m) (17)
at the temperature
kho
Thax= —————. 18
max kB In(mTﬂ') ( )

4. Summary

In summary, we have examined certain properties of the nonclassical maximum-entropy states
of a single harmonic oscillator. Specifically we have determined the corresponding density
matrix in the position and momentum representation, the position—-momentum uncertainty
product, the Wigner an@ functions, and we have also investigated the thermal properties of
these states. These results are of interest for the description and analysis of the vibrational
centre-of-mass motion of a trapped ion in a harmonic oscillator potential, since the equilibrium
states which result under certain conditions (discussed in [1]) are the maximum-entropy states
described by the density operator, equation (1).
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