Etilen
• To je jedini hormon koji se na fiziološkoj temperaturi nalazi u gasovitom stanju.
• Svi ostali hormoni spadaju u grupe srodnih jedinjenja, dok je etilen jedina supstanca svoje vrste, koja se po biohemiji i fiziološkom dejstvu izdvaja kao samostalna jedinica.
• U voćarskoj i hortikulturnoj praksi etilen se koristi za ubrzavanje prirodnih procesa, koje inače reguliše.
OTKRIĆE ETILENA

• Izvesni efekti eltilena su bili poznati odavno ali se nije znalo da ih izaziva ova supstanca.

• Kinezi su palili tamjan da bi ubrzali sazревanje plodova (sagorevanjem tamjana nastaju male količine etilena).

• Tokom XIX veka bilo je opisano nekoliko slučajeva opadanja lišća na uličnom drvoredu, usled toga što je negde u blizini gas za osvetljenje curio iz cevi (u gasu se nalaze male količine etilena).
Etilen kao uzročnik ovih pojava identifikovan je tek 1901.g.

Ruski naučnik Neljubov, izučavajući u laboratorijskim uslovima gravitropsku reakciju stabla graška, zapazio je da mladi etiolirani izdanci nisu uspravni, nego se vršni deo (treća intenodija) savija i raste horizontalno.

Osim toga, izduživanje stabla je bilo inhibirano, a savijeni deo zadebljao.
Uzrok ovakvoj "trostrukoj reakciji" stabla bilo je prisustvo etilena u gasu korišćenom za osvetljanje.
Etilen indukuje "trostruku reakciju":

- Redukovano izduživanje,
- Zadebljavanje hipokotila,
- Preterano uvijanje apikalne kuke.
• U dobro provetrenoj laboratoriji ovakvi efekti se nisu ponavljali.

• Vidljiv efekat se pojavljivao pri koncentraciji 0,06 delova etilena na milion delova vazduha.
• Dvadesetih godina je ponovo poraslo interesovanje za izučavanje etilena kada je otkriveno da je on činilac koji *ubrzava sazrevanje plodova* (banana i dr.), ali i da ga zreli plodovi otpuštaju. Tako je nađeno objašnjenje za davno poznatu pojavu da zreli plodovi ubrzavaju sazrevanje nezrelih, ako se nalaze u istom zatvorenom prostoru.

• Ali tek sa uvođenjem gasne hromatografije za analizu etilena (Burg i Timan, 1959) ovi podaci su nesumnjivo potvrđeni.

• Na osnovu toga se smatra da je značaj etilena u rastenju i razviću vrlo veliki, tako da je on priznat kao poseban biljni hormon.
Hemijske osobine etilena

- Etilen \((\text{CH}_2 = \text{CH}_2)\) je prvi član homologog reda nezasićenih ugljovodonika (olefina);
- Lakši je od vazduha, sa molekulskom masom 28,05.
- Bezbojan gas, slabog etarskog mirisa, sa temperaturom topljenja \(-103 \, ^\circ\text{C}\);
- Dvoguba veza u molekulu daje tri apsorpciona maksimuma u ultraljubičastoj oblasti \((161, 166 \, \text{i} \, 175 \, \text{nm})\).
• Etilen sintetišu skoro sva biljna tkiva. On deluje blizu mesta sinteze i ne transportuje se na veća rastojanja.

• Kao gas koji se oslobada iz čelija, može da se nađe u intercelularima, ali i u ksilemu i floemu.

• Iz biljke se oslobada kroz stome i može da ima efekat na druge biljke u neposrednoj blizini.
Fiziološki efekti etilena

- Kontrola sazrevanja plodova
- Kontrola senescencije listova i kruničnih listića
- Kontrola rastenja korenova
- Odgovor na stres (povrede i hipoksija)
Fiziološki efekti etilena

- Etilen je učesnik u regulaciji mnogih procesa u kojima stupa u interakcije sa drugim hormonima.
- Karakteristične reakcije na etilen su:
 - inhibicija izduživanja stabla (izuzetak su biljke rezistentne na submerziju, tj. potapanje) i korena
 - zadebljavanje stabla i korena
 - savijanje plumule hipokotila
 - epinastija listova
 - indukcija adventivnih korenova i stimulacija rastenja korenkih dlaka
 - stimulacija cvetanja kod ananasa i manga
 - sazrevanje sočnih plodova (banana, jabuka, paradajz i dr.)
 - starenje i opadanje listova i plodova
A pineapple is a fruit produced from pineapple flowers. Commercial growers treat the plants with ethylene to synchronize flowering.
Različiti efekti etilena

(A)

(B)

(C)

(D)

Air

Ethylene
Etilen skraćuje vek trajanja rezanog cveća i plodova

Nivoi etilena mogu da se podešavaju tako da se voće i rezano cveće održe u svežem stanju, kako za komercijalne potrebe tako i kod kuće.

Strategije za ograničavanje etilenskih efekata

Ograničavanje produkcije – visoke koncentracije CO$_2$ ili niske koncentracije O$_2$

Uklanjanje iz okolnog vazduha – reakcija sa KMnO$_4$, adsorpcija na zeolitu

Remećenje vezivanja etilena za receptore – natrijum tiosulfat (STS), diazociklopentadien (DACP), druga jedinjenja
Plate 43 Genetically engineered carnations. long-life flower (left) due to antisense ACC oxidase gene. See Figure 10.41 on page 344.
(Photographs courtesy Florigene Limited, Melbourne, © 1995, 1996)
Najvažniju ulogu etilen ima u sazrevanju sočnih plodova, kao što su jabuka, banana, paradajz, avokado i dr., kod kojih je najviše i ispitivan.
Plate 46 Genetic manipulation can profoundly affect fruit ripening. Normal tomato (right) and FlavrSavr™ tomato (left) were picked when nearly ripe then kept at room temperature for four weeks. Scale bar = 2 cm. See Figure 11.22 on page 375
<table>
<thead>
<tr>
<th>Climacteric</th>
<th>Nonclimacteric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Bell pepper</td>
</tr>
<tr>
<td>Avocado</td>
<td>Cherry</td>
</tr>
<tr>
<td>Banana</td>
<td>Citrus</td>
</tr>
<tr>
<td>Cantaloupe</td>
<td>Grape</td>
</tr>
<tr>
<td>Cherimoya</td>
<td>Pineapple</td>
</tr>
<tr>
<td>Fig</td>
<td>Snap bean</td>
</tr>
<tr>
<td>Mango</td>
<td>Strawberry</td>
</tr>
<tr>
<td>Olive</td>
<td>Watermelon</td>
</tr>
<tr>
<td>Peach</td>
<td></td>
</tr>
<tr>
<td>Pear</td>
<td></td>
</tr>
<tr>
<td>Persimmon</td>
<td></td>
</tr>
<tr>
<td>Plum</td>
<td></td>
</tr>
<tr>
<td>Tomato</td>
<td></td>
</tr>
</tbody>
</table>
Etilen podстиće sazrevanje plodova

Etilen je gasoviti biljni hormon koji podстиće omekšavanje plodova i razvoj nihovog ukusa i boje.
Efekat etilena na opadanje listova

- **Leaf maintenance phase**: High auxin from leaf reduces ethylene sensitivity of abscission zone and prevents leaf shedding.

- **Shedding induction phase**: A reduction in auxin from the leaf increases ethylene production and ethylene sensitivity in the abscission zone, which triggers the shedding phase.

- **Shedding phase**: Synthesis of enzymes that hydrolyze the cell wall polysaccharides, resulting in cell separation and leaf abscission.
Etilen podstiče starenje listova i kruničnih listića

Vazduh (kontrola) 7 dana etilen

Etilen podstiče starenje (senescenciju) listova i petiola.

U kućama koje su se osvetljavale gasnim lampama etilen, koji je nastajao sagorevanjem gasa, je štetno uticao na sobne biljke. Aspidistra je rezistentna na etilen, pa je tako postala popularna sobna biljka.
Epinastija
Biosinteza i metabolizam

Prekursor etilena je aminokiselina **L-metionin**

\[
\text{H}_3\text{C} \quad \text{S} \quad \text{CH}_2 \quad \text{CH}_2 \quad \text{CH} \quad \text{COO}^-
\]
Ciklus metionina (Jangov ciklus)

1 - SAM sintetaza
2 - ACC sintetaza
3 - ACC oksidaza
4 - ACC-malonil transferaza
5 - MTA nukleozidaza
6 - MTR kinaza

S-adenozil metionin → ACC sintetaza → ACC oksidaza → ACC → 1-aminociklopropan-1-karboksilna kiselina (ACC) → N-malonil-ACC → Etilen

1/2 O₂ + CO₂ + HCN + H₂O → Malonil-CoA → Etilen
Regulacija biosinteze

- Stupanj u kome se najčešće obavlja regulacija biosinteze etilena je ACC sintaza.
- Ako se egzogeni ACC doda biljnim tkivima, od njega se vrlo brzo proizvodi etilen, što se može ili meriti, ili zapaziti po biološkoj reakciji.
- ACC je podložan reakciji u kojoj se ireverzibilno vezuje za N-malonil CoA, čime se smanjuje proizvodnja etilena.
• Biosinteza etilena je u nekim slučajevima *autokatalitički proces* - mala količina etilena intenzivira sintetičke procese.

• Ako se nezreli plodovi banane izlože propilenu, koji u vrlo visokoj koncentraciji ima slično dejstvo, onda oni posle odredjenog vremena bez novih stimuliusa počinju da proizvode etilen.

• *Zaključak*: *postoje dva stupnja u sintezi etilena.*
• prvi stupanj je verovatno uvek indukovan, a drugi je autokatalitički.
• Povećana biosinteza etilena se javlja i pod uticajem nekih spoljašnjih činilaca.
• To je naročito karakteristično u uslovima stresa.
• Svi fizički stresni faktori, kao i napad parazitskih gljiva, izazivaju ponekad veoma burnu sintezu etilena.
• Tretiranje biljaka visokim dozama auksina takođe povećava sintezu etilena, što je izvesno vreme uzimano kao moguće objašnjenje za neke inhibitorne efekte auksina.
Antagonist aktivnosti etilena u većini fizioloških procesa je CO₂, a takođe i soli srebra i nekih drugih teških metala
FIGURE 11-11 Structure of Ethephon and some inhibitors of ethylene action: 2,5-norbornadiene, trans-cyclooctene, and 1-methylcyclopropene.
Etilen i odgovori biljaka na stres

- Biotički (infekcija patogenim gljivama) i abiotički stres (mehaničke povrede, vrućina, hladnoća, suša, zagadjenje vazduha, hemikalije, salinitet) mogu (ali ne moraju) znatno da povećaju produkciju etilena kod biljaka.

- Etilen koji se tako sintetiše naziva se “etilenom stresa”.
• U uslovima deficijencije kiseonika (hipoksije) kod biljaka otpornih na potapanje (neke vrste pirinča, *Rumex palustris* i dr.) nagomilavanje etilena u potopljenim tkivima ima ključnu ulogu u velikom broju fizioloških odgovora koji pomažu biljkama da izbegnu ovu vrstu stresa.

• Najznačniji fiziološki odgovori ovog tipa su: ubrzano izduživanje potopljenog dela stabla i lisnih drški, indukcija adventivnih korenova na stablu ispod nivoa vode, epinastija listova i hipertrofija lenticela na stablu. Ovi efekti se ostvaruju u interakciji etilena sa gibarelinima izduživanje) i auksinima (ožiljavanje).
Mutanti sa defektnom recepcijom etilenskog signala odlikuju se poremećajima u sazrevanju plodova.

Mutacije koje utiču na recepciju etilenskog signala istovremeno dovođe i do promena u sazrevanju plodova.

Wild type

Green-ripe

Never-ripe 2

Never-ripe